12,863 research outputs found
Sensible and latent heating of the atmosphere as inferred from DST-6 data
The average distribution of convective latent heating, boundary layer sensible heat flux, and vertical velocity are determined for the winter 1976 DST period from GLAS model diagnostics. Key features are the regions of intense latent heating over Brazil, Central Africa, and Indonesia; and the regions of strong sensible heating due to air mass modification over the North Atlantic and North Pacific Oceans
Towards an optical potential for rare-earths through coupled channels
The coupled-channel theory is a natural way of treating nonelastic channels,
in particular those arising from collective excitations, defined by nuclear
deformations. Proper treatment of such excitations is often essential to the
accurate description of reaction experimental data. Previous works have applied
different models to specific nuclei with the purpose of determining
angular-integrated cross sections. In this work, we present an extensive study
of the effects of collective couplings and nuclear deformations on integrated
cross sections as well as on angular distributions in a consistent manner for
neutron-induced reactions on nuclei in the rare-earth region. This specific
subset of the nuclide chart was chosen precisely because of a clear static
deformation pattern. We analyze the convergence of the coupled-channel
calculations regarding the number of states being explicitly coupled. Inspired
by the work done by Dietrich \emph{et al.}, a model for deforming the spherical
Koning-Delaroche optical potential as function of quadrupole and hexadecupole
deformations is also proposed. We demonstrate that the obtained results of
calculations for total, elastic and inelastic cross sections, as well as
elastic and inelastic angular distributions correspond to a remarkably good
agreement with experimental data for scattering energies above around a few
MeV.Comment: 7 pages, 6 figures. Submitted to the proceedings of the XXXVI
Reuni\~ao de Trabalho de F\'{\i}sica Nuclear no Brasil (XXXVI Brazilian
Workshop on Nuclear Physics), held in Maresias, S\~ao Paulo, Brazil in
September 2013, which should be published on AIP Conference Proceeding
Series. arXiv admin note: substantial text overlap with arXiv:1311.1115,
arXiv:1311.042
Removing black-hole singularities with nonlinear electrodynamics
We propose a way to remove black hole singularities by using a particular
nonlinear electrodynamics Lagrangian that has been recently used in various
astrophysics and cosmological frameworks. In particular, we adapt the
cosmological analysis discussed in a previous work to the black hole physics.
Such analysis will be improved by applying the Oppenheimer-Volkoff equation to
the black hole case. At the end, fixed the radius of the star, the final
density depends only on the introduced quintessential density term
and on the mass.Comment: In this last updated version we correct two typos which were present
in Eqs. (21) and (22) in the version of this letter which has been published
in Mod. Phys. Lett. A 25, 2423-2429 (2010). In the present version, both of
Eqs. (21) and (22) are dimensionally and analytically correc
A Meta-Analysis of Procedures to Change Implicit Measures
Using a novel technique known as network meta-analysis, we synthesized evidence from 492 studies (87,418 participants) to investigate the effectiveness of procedures in changing implicit measures, which we define as response biases on implicit tasks. We also evaluated these procedures’ effects on explicit and behavioral measures. We found that implicit measures can be changed, but effects are often relatively weak (|ds| \u3c .30). Most studies focused on producing short-term changes with brief, single-session manipulations. Procedures that associate sets of concepts, invoke goals or motivations, or tax mental resources changed implicit measures the most, whereas procedures that induced threat, affirmation, or specific moods/emotions changed implicit measures the least. Bias tests suggested that implicit effects could be inflated relative to their true population values. Procedures changed explicit measures less consistently and to a smaller degree than implicit measures and generally produced trivial changes in behavior. Finally, changes in implicit measures did not mediate changes in explicit measures or behavior. Our findings suggest that changes in implicit measures are possible, but those changes do not necessarily translate into changes in explicit measures or behavior
Anomalous Suppression of Valley Splittings in Lead Salt Nanocrystals without Inversion Center
Atomistic sp3d5s* tight-binding theory of PbSe and PbS nanocrystals is
developed. It is demonstrated, that the valley splittings of confined electrons
and holes strongly and peculiarly depend on the geometry of a nanocrystal. When
the nanocrystal lacks a microscopic center of inversion and has T_d symmetry,
the splitting is strongly suppressed as compared to the more symmetric
nanocrystals with O_h symmetry, having an inversion center.Comment: 5 pages, 4 figures, 1 tabl
Sparse Randomized Kaczmarz for Support Recovery of Jointly Sparse Corrupted Multiple Measurement Vectors
While single measurement vector (SMV) models have been widely studied in
signal processing, there is a surging interest in addressing the multiple
measurement vectors (MMV) problem. In the MMV setting, more than one
measurement vector is available and the multiple signals to be recovered share
some commonalities such as a common support. Applications in which MMV is a
naturally occurring phenomenon include online streaming, medical imaging, and
video recovery. This work presents a stochastic iterative algorithm for the
support recovery of jointly sparse corrupted MMV. We present a variant of the
Sparse Randomized Kaczmarz algorithm for corrupted MMV and compare our proposed
method with an existing Kaczmarz type algorithm for MMV problems. We also
showcase the usefulness of our approach in the online (streaming) setting and
provide empirical evidence that suggests the robustness of the proposed method
to the distribution of the corruption and the number of corruptions occurring.Comment: 13 pages, 6 figure
Phase Space Tomography of Matter-Wave Diffraction in the Talbot Regime
We report on the theoretical investigation of Wigner distribution function
(WDF) reconstruction of the motional quantum state of large molecules in de
Broglie interference. De Broglie interference of fullerenes and as the like
already proves the wavelike behaviour of these heavy particles, while we aim to
extract more quantitative information about the superposition quantum state in
motion. We simulate the reconstruction of the WDF numerically based on an
analytic probability distribution and investigate its properties by variation
of parameters, which are relevant for the experiment. Even though the WDF
described in the near-field experiment cannot be reconstructed completely, we
observe negativity even in the partially reconstructed WDF. We further consider
incoherent factors to simulate the experimental situation such as a finite
number of slits, collimation, and particle-slit van der Waals interaction. From
this we find experimental conditions to reconstruct the WDF from Talbot
interference fringes in molecule Talbot-Lau interferometry.Comment: 16 pages, 9 figures, accepted at New Journal of Physic
Radiation-induced growth and isothermal decay of infrared-stimulated luminescence from feldspar
Optically stimulated luminescence (OSL) ages can determine a wide range of geological events or processes, such as the timing of sediment deposition, the exposure duration of a rock surface, or the cooling rate of bedrock. The accuracy of OSL dating critically depends on our capability to describe the growth and decay of laboratory-regenerated luminescence signals. Here we review a selection of common models describing the response of infrared stimulated luminescence (IRSL) of feldspar to constant radiation and temperature as administered in the laboratory. We use this opportunity to introduce a general-order kinetic model that successfully captures the behaviour of different materials and experimental conditions with a minimum of model parameters, and thus appears suitable for future application and validation in natural environments. Finally, we evaluate all the presented models by their ability to accurately describe a recently published feldspar multi-elevated temperature post-IR IRSL (MET-pIRIR) dataset, and highlight each model's strengths and shortfalls
- …