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Abstract 

Optically stimulated luminescence (OSL) ages can determine a wide range of 

geological events or processes, such as the timing of sediment deposition, the 

exposure of a rock surface, or the cooling of bedrock. The accuracy of OSL dating 

critically depends on our capability to describe the growth and decay of laboratory-

regenerated luminescence signals. Here we review a selection of common models 

describing the response of infrared stimulated luminescence (IRSL) of feldspar to 

constant radiation and temperature as administered in the laboratory. We use this 

opportunity to introduce a general-order kinetic model that successfully captures the 

behaviour of different materials and experimental conditions with a minimum of 

model parameters, and thus appears suitable for future application and validation in 

natural environments. Finally, we evaluate all the presented models by their ability to 

accurately describe a recently published feldspar multi-elevated temperature post-IR 

IRSL (MET-pIRIR) dataset, and highlight each model’s strengths and shortfalls. 

http://ees.elsevier.com/radmeas/viewRCResults.aspx?pdf=1&docID=6721&rev=1&fileID=204092&msid={C24B031E-AB47-4460-88A2-B30375387A55}
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1. Introduction

Optically stimulated luminescence (OSL) dating of feldspar, commonly 

utilising stimulation with infrared (IR) light and hence termed IRSL, is a group of 

methods enabling the determination of depositional ages of middle to late 

Quaternary sediments (Hütt et al., 1988; Buylaert et al., 2012; Li et al., 2014). More 

recently, the geological applications of feldspar IRSL have been extended to surface 

exposure dating (Sohbati et al., 2011) and low-temperature thermochronology 

(Guralnik et al., under review). In addition to the chemical or physical 

characterisation of a sample’s natural radioactivity, the conversion of its natural 

luminescence into a radiometric age involves two laboratory experiments, in which 

the luminescence is monitored as a function of the exposure time t  [s] to (i) a source 

of constant radioactivity D  [Gy s-1], and (ii) a source of a constant temperature T

[K]. The former experiment determines how fast does the luminescence signal grow 

under an artificial radiation source, and the latter (often skipped in routine sediment 

dating) quantifies the thermal stability of the dosimetric electron trap. 

Although the observable rates of luminescence growth and decay in the 

laboratory are typically faster by a factor of ~1010 than in nature, geological dating 

must assume that the kinetic parameters describing laboratory behaviour are 

fundamental physical characteristics of the material, that can be extrapolated over 

longer timescales and slower rates. Thus, the selection of a model for describing 

laboratory behaviour is more than critical for the correct and meaningful conversion 

of the natural luminescence intensities into equivalent ages. Even if a model 

produces an excellent fit to laboratory data, this cannot necessarily guarantee its 

successful extrapolation to geological timescales; at the same time, a model which 

does not fit laboratory data is even harder to evaluate, since it may further propagate 

this failure unpredictably, potentially yielding correct ages even though the model is 

inadequate. In this paper, we take a fresh look at the conventional ‘status quo’ 

models currently used to describe dose response and thermal sensitivity of feldspar 

IRSL. We further examine an interesting heuristic approach (the General-Order 

Kinetic model), and use a representative dataset to graphically illustrate the key 

differences between the models, and to quantify their relative successes and 

shortfalls. 
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2. Data and methods 

2.1. Feldspar MET-pIRIR dataset 

The various models discussed in this paper were tested against data that was 

obtained using the multi-elevated temperature post-IR IRSL protocol (MET-pIRIR; Li 

and Li, 2011). This protocol retrieves five different IRSL signals measured at 

incrementally rising stimulation temperatures (50, 100, 150, 200 and 250 °C), and 

typically exhibiting different thermal stabilities. The specific dataset used in our study,  

is taken from the work of Li and Li (2012; 2013), and is provided as a digital 

appendix for any future re-evaluation (see Supplementary Material). The data for 

each of the five post-IR signals (abbreviated MET-pIRIRx, where x is the stimulation 

temperature) consists of a radiation-induced growth experiment (a single time-series, 

observed at a room temperature of ~15 °C), and an isothermal decay experiment 

(four individual time-series, measured at temperatures of 300, 320, 240 and 260 °C, 

and fitted simultaneously). 

 

2.2. Fitting and smoothing procedures 

Nonlinear least-square fitting and estimation of errors was performed using 

the lsqnonlin and nlparci functions in Matlab. Trends in the fitting residuals (Fig. 1) 

and in the best-fit parameters (Fig. 3) were visualised using the locally weighted 

regression and smoothing (LOWESS) method of Cleveland (1979). 

 

2.3. Data visualisation 

 An implicit tradition in modern OSL literature (e.g. Murray and Wintle, 2000) 

stipulates the presentation of radiation-induced growth in form of a ‘dose response’ 

curve, in which the luminescence light sum )(tL  varies as a function of the ‘absorbed 

dose’ tDD   (e.g. Fig. 1a-d). Conversely, isothermal decay experiments carried out 

on the same materials are typically visualised as )/)(log( 0LtL  against time t  only 

(e.g. Murray and Wintle, 1999). In the present paper we use a slightly modified 

visualisation scheme (after Levy, 1961; 1991; Li and Li, 2013), in which the 

luminescence intensity )(tL  is always plotted against )log(t  regardless of whether 

luminescence growth or decay are being explored. The specific benefits of such 

visualisations are: 
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(i) Separation of data from interpretation. When luminescence )(tL  is plotted 

against the absorbed dose tDD  , the x-axis unnecessary entangles a primary 

observation (irradiation time t ) with a derived parameter (the dose rate D ), the 

latter incorporating multiple internal and external uncertainties (Bos et al., 2006; 

Guerin et al., 2012; Kadereit and Kreutzer, 2013; Boehnke and Harrison, 2014). 

Thus, a plot of )(tL  vs. D  technically becomes erroneous with every systematic 

revision of dose rate conversion factors, while a plot of )(tL  vs.  t  will not only 

remain valid, but also be easier to re-analyse in the future. Furthermore, it is 

well-known that in materials suffering from athermal losses, delivery of the same 

dose at different irradiation rates leads to differential luminescence responses 

(e.g. Kars et al., 2008). Thus, showing luminescence response against an 

amalgamated variable which is the product of both time and dose rate tDD   

leads to misapprehension of the dependence of luminescence build-up on 

laboratory dose rates (see Levy, 1961; 1991). 

(ii) Visual informativeness: The processes of luminescence growth and decay are 

both governed by a fundamental rate term [s-1], which drives each corresponding 

process towards a secular steady-state. Derivation of reliable kinetic parameters 

typically relies on data which is uniformly spaced across 3-4 orders of magnitude 

of time (e.g. Kars et al., 2008; Murray et al., 2009; Timar-Gabor et al., 2012). 

Thus, the use of a linear time axis may unfavourably compress information from 

a particular timescale, and lead to a visual misapprehension on fit quality, or the 

lack of experimental points to (dis)prove a certain model (compare Fig 1a-d with 

Fig. 1e-h, showing exactly the same data )(tL  but as a function of tDD   and 

)log( t , respectively). The above problems are less likely to occur on a 

logarithmic time axis )log(t , which not only grants easy comparison between 

similar processes occurring on different timescales, but also highlights regions 

where data is missing to properly constrain the model fitting 

(iii) Uniformity for internal comparison: Visualisation of luminescence growth and 

decay as a function of )log(t  allows a straightforward side-by-side comparison of 

the kinetic responses of the material to cumulative irradiation and heat, and 

facilitates both the detection and quantification of systematic departure from first 

order kinetics in both cases (see Section 3.3 and Fig. 2). Although the new 
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standardised visualisation might be slightly difficult to compare to former studies 

(utilising the more familiar visualisations), we believe that this is a minor 

inconvenience  outweighed by the benefits of internal intercomparison, and of an 

enhanced apprehension of model quality.  

 

[Figure 1] 

 

3. Models and results 

3.1. First-order (exponential) kinetics (1EXP) 

The growth of the IRSL light sum )(tL  [a.u.] in a feldspar exposed to a 

radioactive source may be described by a saturating exponential function: 

)/exp(1/)( 0max DtDLtL   (1) 

(e.g. Balescu et al., 1997; Li and Li, 2012) where maxL  [a.u.] is the maximum 

luminescence light sum, D  [Gy s-1] the constant dose rate of the radioactive source, 

t  [s]  the time, and 0D  [Gy] the characteristic dose. Similarly, the time-evolution of 

)(tL  [a.u.] under isothermal storage of the feldspar at temperature T  [K] may be 

described by a decaying exponential function: 

 tseLtL
TkE B 

 /

0 exp/)(  (2) 

(e.g. Li et al., 1997; Murray et al., 2009), where 0L  [a.u.] is the initial IRSL light sum, 

E  [eV] and s  [s-1] the Arrhenius parameters (activation energy and the attempt-to-

escape frequency, respectively), Bk  [eV K-1] Boltzmann’s constant, and t  [s]  the 

time as before.  

 Figures 1a,e and 1i demonstrate the rather unsatisfactory fits of the 1EXP 

model to the irradiation response (top plots in Figs. 1a,e) and isothermal decay (Fig. 

1i) of the MET-pIRIR250 signal. Although for luminescence growth (top plots in Figs. 

1a,e), the 1EXP model explains ~99% of the variance in the data, the residuals are 

not normally distributed over the time domain (bottom plot in Figs. 1a,e), stipulating 

the search for a better model. For the isothermal decay data, the overall R2 of 1EXP 

(~85% in Fig. 1i) is grossly overestimating the individual R2 for each holding 

temperature, and thus evaluates this model as inappropriate.  
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3.2. Multi-exponential kinetics (mEXP) 

 Observation of slow but steady growth of feldspar IRSL at high doses 

( 0DtD  ) is often empirically explained by a saturating exponential plus linear 

(1EXP+LIN) model: 

   0201 /)/exp(1)( DtDLDtDLtL    (3) 

(e.g. Lai, 2010), where 1L  and 2L  [a.u.] are the saturating exponential and linear 

components, respectively (typically 12 LL  ). Although such linear growth may be 

interpreted as a steady generation of new electron traps at a fixed rate (e.g. Levy, 

1961), this phenomenon is more often viewed as the early expression of a second 

saturating exponential, corresponding to a different component or sub-population of 

the electron trap (Chen et al., 2001). Following the reasoning of signal break-up into  

individual components, the dose response of feldspar IRSL may be generalized to: 

  
m

ii DtDLtL
1

,0 )/exp(1)(   (4) 

where m=2 usually suffices (e.g. Thomsen et al., 2011; Buylaert et al., 2012), and 

where iL  [a.u.] and iD ,0  [Gy] are the maximum light sum and characteristic dose of 

the i -th component. To justify the 2EXP model in quartz OSL, several working 

hypotheses have been put forth (Lowick et al., 2010; Berger and Chen, 2011; Timar-

Gabor et al., 2012), but the phenomenon is still poorly understood (Wintle, 2011). 

From the chemical standpoint, the possibility of distinct dose-response components 

in feldspar is even more likely than in quartz (e.g. different 0D  values for each 

compositional end-member of feldspar; cf. Barré and Lamothe, 2010), however this 

conjecture is pending further proof.  

Fits of 1EXP+LIN and 2EXP to the MET-pIRIR250 dataset are shown in Figs. 

1b-c and 1f-g. From inspecting the residuals, it may be seen that 2EXP performs 

better due to one extra model parameter. However, the dataset is in fact insufficient 

to justify the break-up into the best-fit dose components 1,0D =122±30 Gy and 

2,0D =490±60 Gy, as the 0D  values are too closely spaced (see review by Istratov 

and Vyvenko, 1999). Interestingly, neither of the above values, nor the 0D =244±9 Gy 

from 1EXP+LIN, overlap with the baseline value of 0D =315±8 Gy, retrieved by not 

necessarily the correct, yet the simplest 1EXP model. 
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Switching to multi-exponential description of isothermal loss, we start with the 

model of Jain et al. (2012), who expressed the thermal loss of trapped charges via a 

quantum mechanical tunnelling from the excited state of the electron trap. In the 

resulting multi-exponential system (where first-order loss occurs only for a fixed 

electron-hole separation distance), the decrease of luminescence intensity with 

progressive isothermal storage can be approximated by: 

   3/

0 8.11lnexp/)( tseLtL
TkE B 

  (5) 

(Kitis and Pagonis, 2013), where 0L  [a.u.] is the initial intensity, and   the scaled 

density of the nearest-neighbour distribution of holes. Notably, Eq. (5) reduces to the 

athermal tunnelling model of Huntley (2006) upon the substitution 0E , thereby 

generalising Huntley’s model to thermally-assisted processes. The fit of Eq. (5) to the 

MET-pIRIR250 data is shown in Fig. 1i, with narrowly constrained parameters and no 

appreciable time dependence or structure in the residuals. 

A different multi-exponential approach was taken by Li and Li (2013), who 

assumed that trapped electrons are thermally activated to discrete and exponentially 

distributed energy levels below the conduction band (known as band tail states, 

Poolton et al., 2002; 2009). Envisaging a spatial distribution where each electron trap 

is associated with only one band-tail energy level above it, Li and Li (2013) 

expressed the overall thermal decay of luminescence as: 

b

E

tseEE
dEeeLtL

TBkbEE
ub

 


0

/

0

/)(

/)(  (6a) 

where 0L  [a.u.] is the initial intensity, and uE  [eV] is the Urbach band-tail width. Eq. 

(6a) reduces to Eq. (2) for 0bE , and thereby qualifies as its logical extension. To 

derive a convenient approximation for Eq. (6a) for data fitting, we introduce 

TkEb Bb / , TkEu Bu / , and TkE Bset
/

 , and rewrite Eq. (6a) as: 

dueeTkLtL

b

eub

B

b




0

0

/

0/)(   (6b) 

To bypass tedious numerical integration, this paragraph derives a convenient 

analytical approximation for Eq. (6b), which can be easily implemented in common 

curve-fitting software. We begin by a change of variables bew   and rearrange the 

latter into wdwdbwb /,ln  , to obtain: 
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  (6c) 

where 
 
is the upper incomplete gamma function. Back-substitution of the original 

variables, and omission of the negligible second 
 
term results in: 

   TkE

uB

ETkTkE

B
B

uB
B setETksetTkLtL

///

0 ,//)(


  (6d) 

Eq. (6d) is the desired approximation of Eq. (6a). The fit of Eq. (6d) to the MET-

pIRIR250 data is shown in Fig. 1j, displaying a reasonable fit, but with an undesirable 

non-uniform distribution of the residuals. 

 

3.3. General order kinetics (GOK) 

The familiar first-order description of luminescence growth and decay (Eqs. 1-

2) may be generalised to: 

)/exp(1/)( max tLtL   (7) 

)/exp(/)( max tLtL   (8) 

where max/)( LtL  is the normalized luminescence light sum [a.u.], t  [s] is time, and   

[s] a time constant. To depart from first order kinetics, we follow Whitehead et al. 

(2009) by introducing a time-dependent ctt  0)(  , where 0c  is a kinetic order 

modifier, and rewrite /t  as: 












 

00 00

1ln
11

)(

1
/




ct

c
dt

ct
dt

t
t

tt

 (9) 

To obtain the general-order expressions, we insert Eq. (9) into Eqs. (7-8), and make 

the additional substitutions DD /00   for radiation-induced growth, and 

)/exp(1

0 TkEs B

  for thermally-activated decay, to obtain: 

  c
ctDDLtL

/1

0max )/(11/)(


   (10) 

  cTkE
ctseLtL B

/1/

max 1/)(


  (11) 

Note that for 0c , the new Eqs. (10-11) asymptotically reduce to Eqs. (1-2), but as 

c  increases they progressively deviate from first-order behaviour (Fig. 2). Note that 

Eq. (11) has been already used to fit isothermal decay of luminescence in quartz 

(Ankjærgaard et al. 2013; Wu et al., this issue), and although, to the best of our 

knowledge, Eq. (10) is unprecedented within luminescence dosimetry literature, it 

appears as a perfectly valid and logical counterpart of Eq. (11).  
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[Figure 2] 

 

To further explore the placement of Eqs. (10-11) within the context of general-

order kinetics, we differentiate both equations with respect to time, assume the 

standard proportionality between luminescence and trapped charge ( ntL )( , 

NL max ), and make a convenient variable replacement ( 1 c , 1 c ) to 

translate Eqs. (10-11) into: 





















N

n

D

D

N

n

dt

d
1

0


 (12) 



















 

N

n
se

N

n

dt

d TkE B/  (13) 

in which n  is the number of electrons trapped in N  traps of a certain type [both a.u.], 

and   and   are the kinetic orders [a.u.] of the electron trapping and detrapping 

reactions, respectively. 

The effect of the unitless kinetic orders   and   on the luminescence growth 

and decay is graphically shown in Fig. 2 and discussed below. In first-order kinetics 

)1,1(    the growth and decay rates of luminescence are always independent of 

the amount of trapped charge Nn /  (thus justifying the definition of a trap lifetime). 

Conversely, in higher order kinetics )1,1(    reaction do depend on trap 

occupation, and always progress at slower-than-exponential rates. This may be 

mathematically appreciated by looking at Eqs. 12-13, where the fractions of empty 

and filled electron traps ( Nn /1  and Nn / , respectively), always smaller than unity, 

are both further diminished when raised to a power of 1,1   . 

From the physical standpoint, the progressive slowdown of reaction rates in 

systems which are nearly empty or borderline their full capacity (i.e. close to the 

boundary conditions) is both understandable and predictable. Specifically, the 

slower-than-exponential electron detrapping ( 1 ) has been often considered in the 

luminescence literature (e.g. Wise, 1951; May and Partridge, 1964; Rasheedy, 

1993), and explained in terms of electron retrapping or distance-dependent 

probabilities. Conversely, the slower-than-exponential trapping of electrons ( 1 ) in 

a confined volume due to the gradual build-up of Coulomb repulsive forces is a well-

studied phenomenon in field-effect transistors (e.g. Sune et al., 1990; Williams, 



10 
 

1992). Buildup of Coulomb forces, and the presently overlooked effects of possible 

charge disequilibrium within irradiated crystals, are both subjects of increasing 

interest within the luminescence dating community, stipulating new research 

directions being currently underway (J.-P. Buylaert, pers. comm.).  

While a further physical validation of Eqs. (12-13) remains outside of the 

scope of the present work, we note that their superposition results in: 




























 

N

n
se

N

n

D

D

N

n

dt

d TkE B/

0

1


 (15) 

which for 1   reduces to the familiar description of thermoluminescence 

systems (Christodoulides et al., 1971), and for 1,   serves as its logical extension 

for more complex (i.e. slowed-down) behaviour. 

The fits of Eqs. (10-11) to the MET-pIRIR250 growth and decay are shown in 

Figs. 1d,h and 1k, respectively. Interestingly, the 0D ’s recovered by the 1EXP and 

GOK models are indistinguishable; from this perspective, GOK is the only extended 

model which introduces a further complexity without affecting the primary response 

variable ( 0D ) as obtained from the least sophisticated model (Eq. 1). For the 

isothermal holding, the GOK model fits the experimental dataset equally well as 

mEXP tunnelling, further exhibiting the narrowest confidence intervals. 

 

4. Discussion 

The best-fit kinetic parameters for the MET-pIRIR250 signal from Fig. 1 are 

summarised in Fig. 3 (filled circles) and further supplemented by the best-fit 

parameters from the other four MET-pIRIR signals (MET-pIRIR50 – MET-pIRIR200). 

Starting with the radiation-induced growth dataset (Fig. 3a-d), it seems that 

irrespective of the chosen model, 0D  appears to be anti-correlated with the MET 

stimulation temperature, yielding progressively smaller 0D ’s for the least fading 

signals (pIR200 and pIR250). Although compared to 1EXP, the multicomponent 

1EXP+LIN and the 2EXP models appear as plausible fits on the typical ‘dose-

response’ curves (Figs. 1b-c), they appear as unconstrained over-fitting artefacts, 

lacking model verification in their high-dose domain (clearly seen as the 

unconstrained model predictions in Figs. 1f-g), and therefore raising further concern 

for their use for predicting minimum ages or thermal closure ages, where the steady-
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state response of the system becomes a crucial consideration. The GOK model 

looks promising not only because it fits the experimental data best with a minimum of 

model parameters, but also because it retains the same 0D ’s as the simplest 1EXP 

model; however, the validity of this approach both in the high-dose region and within 

natural environments, is clearly subject to further investigation. 

For the isothermal decay dataset (Figs. 3e-h), the 1EXP model seems 

absolutely inadequate. In the bandtail mEXP, tunnelling mEXP and GOK models, 

there is a clear correlation between a single response variable ( uE , 10log  or c ) 

with the post-IR stimulation temperature, which the Arrhenius parameters assuming 

E  and s   remain semi-constant. However, a high covariance between E  and  uE  in 

the bandtail mEXP points to an  ill-conditioned fit, to be addressed though a 

reduction of the number of parameters (e.g. assuming E , uE  or s  to be constant; cf. 

Li and Li, 2013). The tunnelling mEXP model yields kinetic parameters that are 

supported in literature, including a familiar s  value in the range 1012 – 1014 s-1, and 

E ~1.4 eV corresponding to the optical energy of the excited state; how these results 

apply to pIRIR signals involving transitions through band tail states is a separate 

question worth investigating (see Jain et al., this volume). The GOK model yields 

E ~1.3 eV and s ~109, both of which are anomalously low compared to familiar 

literature values (Li et al., 1997; Murray et al., 2009; Li and Li, 2013). While the 

extrapolation of these kinetic parameters to geological timescales seems to be 

successful (Guralnik et al., subm.), additional effort is required to understand 

whether these best-fit parameters fold in the initial experimental conditions of the 

explored systems (cf. Rasheedy, 1993). 

 

[Figure 3] 

 

Although heuristic, the proposed GOK model offers a convenient and self-

consistent alternative to the more established multi-exponential analysis, yielding 

plausible fits to experimental data with a comparable (or fewer) number of model 

parameters, and a well-known physical reasoning. Although the dataset is too small 

to allow a meaningful statistical inference (n=5), it is worthwhile to note that the 

kinetic orders of dose response (Fig. 3d) and isothermal holding (Fig. 3h) appear to 

be pairwise correlated. This suggests that a particular system’s departure from first-
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order kinetics (Fig. 2) may be manifested in mirroring electron trapping and 

detrapping processes. This observation further justifies the proposed uniform 

visualisation )(tL  vs. )log(t  for both dose response and isothermal holding 

experiments, as it may help identify and correlate the departure from first-order 

kinetics in both these processes. Furthermore, the hypothesized correlation    

invites to consider a continuous multi-exponential fitting (Eqs. 5 or 6) for the 

description of dose response in feldspar, which is currently only modelled by a finite 

and usually small number of dose-response components. 

The present study has focused on evaluating the different feldspar models 

against a set of laboratory experiments, where the rates of electron trapping and 

detrapping are roughly ~1010 times faster than in typical natural settings. The next 

desirable step would be to test these models in natural conditions, where there is a 

maximum number of independent constraints on the sedimentation age, the duration 

of surface exposure, or the thermal regime. Noticeable mismatches between 

laboratory and natural dose response curves (Chapot et al., 2012; Zander and 

Hilgers, 2013) stipulate the evaluation of all models in their high-dose (steady-state) 

region, not regularly covered by standard laboratory measurements (Fig. 1e-h). 

Better characterisation of the high-dose region would also be beneficial for minimum 

age reporting (e.g. Joordens et al., 2014) or for thermochronological interpretation 

(Guralnik et al., 2013). In particular, the applicability of the general-order kinetics 

(GOK) model to natural conditions seems very promising, and will be reported 

elsewhere (Wu et al., this volume; Ankjærgaard et al., this volume; Guralnik et al., 

under review).  

 

5. Conclusions 

 This paper reviewed common models describing dose response and 

isothermal decay in feldspar IRSL dating, and introduced a self-consistent general 

order kinetic model which produces good fits to laboratory data. As a first step 

towards proper model evaluation and intercomparison, we promote the use of a 

logarithmic time axis for the visualisation of both dose response and isothermal 

holding experiments. As a second step, we have demonstrated that representative 

feldspar IRSL data cannot be adequately described by first-order kinetics, while 

some of the common multi-exponential approaches are seen to suffer from 



13 
 

covariated (and thus potentially non-identifiable) parameters. The proposed general 

order kinetics model captures both the laboratory dose response and isothermal 

decay of feldspar IRSL well, but may only be a gross mathematical simplification of 

actual physical processes; nevertheless it is a promising path towards 

methodological standardisation, stipulating further basic research and comparative 

model verification in well-constrained geological environments. 
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Figure captions 

Figure 1: Irradiation-response (a-h) and isothermal decay (i-l) of feldspar MET-

pIRIR250 signal (filled circles on top panels) as best-fitted by the various models 

discussed in the text (lines with 95% confidence interval on top panels), with quoted 

best-fit parameters and goodness-of-fit. Fitting residuals and their trends (dots and 

lines on the bottom panels) were obtained by LOWESS (locally-weighted scatterplot 

smoothing; Cleveland, 1979). 

 

Figure 2: Radiation induced growth (a) and isothermal decay (b) for different kinetic 

orders in the range 1-5, obtained via Eqs. (10) and (11) upon the substitutions 

1c  and 1 c , respectively. 

 

Figure 3: Cross-model summary of the best-fitting parameters for the MET-pIRIR250 

signal from Fig. 1 (filled circles), alongside best-fitting parameters for the four lower 

temperature MET-pIRIR signals, given as Supplementary Data (hollow circles).  
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