3,020 research outputs found
Electromagnetics from a quasistatic perspective
Quasistatics is introduced so that it fits smoothly into the standard
textbook presentation of electrodynamics. The usual path from statics to
general electrodynamics is rather short and surprisingly simple. A closer look
reveals however that it is not without confusing issues as has been illustrated
by many contributions to this Journal. Quasistatic theory is conceptually
useful by providing an intermediate level in between statics and the full set
of Maxwell's equations. Quasistatics is easier than general electrodynamics and
in some ways more similar to statics. It is however, in terms of interesting
physics and important applications, far richer than statics. Quasistatics is
much used in electromagnetic modeling, an activity that today is possible on a
PC and which also has great pedagogical potential. The use of electromagnetic
simulations in teaching gives additional support for the importance of
quasistatics. This activity may also motivate some change of focus in the
presentation of basic electrodynamics
A new look at the Dynamic Similarity Hypothesis: the importance of swing phase
Summary The Dynamic Similarity Hypothesis (DSH) suggests that when animals of different size walk at similar Froude numbers (equal ratios of inertial and gravitational forces) they will use similar size-corrected gaits. This application of similarity theory to animal biomechanics has contributed to fundamental insights in the mechanics and evolution of a diverse set of locomotor systems. However, despite its popularity, many mammals fail to walk with dynamically similar stride lengths, a key element of gait that determines spontaneous speed and energy costs. Here, we show that the applicability of the DSH is dependent on the inertial forces examined. In general, the inertial forces are thought to be the centripetal force of the inverted pendulum model of stance phase, determined by the length of the limb. If instead we model inertial forces as the centripetal force of the limb acting as a suspended pendulum during swing phase (determined by limb center of mass position), the DSH for stride length variation is fully supported. Thus, the DSH shows that inter-specific differences in spatial kinematics are tied to the evolution of limb mass distribution patterns. Selection may act on morphology to produce a given stride length, or alternatively, stride length may be a “spandrel” of selection acting on limb mass distribution
A survey of X-ray emission from 100 kpc radio jets
We have completed a Chandra snapshot survey of 54 radio jets that are
extended on arcsec scales. These are associated with flat spectrum radio
quasars spanning a redshift range z=0.3 to 2.1. X-ray emission is detected from
the jet of approximately 60% of the sample objects. We assume minimum energy
and apply conditions consistent with the original Felten-Morrison calculations
in order to estimate the Lorentz factors and the apparent Doppler factors. This
allows estimates of the enthalpy fluxes, which turn out to be comparable to the
radiative luminosities.Comment: Conference Proceedings IAU Symposium No. 313, Extragalactic jets from
every angle, pp. 219-224, 4 figure
Recommended from our members
The Clinical Utility of a Precision Medicine Blood Test Incorporating Age, Sex, and Gene Expression for Evaluating Women with Stable Symptoms Suggestive of Obstructive Coronary Artery Disease: Analysis from the PRESET Registry.
Background: Evaluating women with symptoms suggestive of coronary artery disease (CAD) remains challenging. A blood-based precision medicine test yielding an age/sex/gene expression score (ASGES) has shown clinical validity in the diagnosis of obstructive CAD. We assessed the effect of the ASGES on the management of women with suspected obstructive CAD in a community-based registry. Materials and Methods: The prospective PRESET (A Registry to Evaluate Patterns of Care Associated with the Use of Corus® CAD in Real World Clinical Care Settings) Registry (NCT01677156) enrolled 566 patients presenting with symptoms suggestive of stable obstructive CAD from 21 United States primary care practices from 2012 to 2014. Demographics, clinical characteristics, and referrals to cardiology or further functional and/or anatomical cardiac studies after ASGES testing were collected for this subgroup analysis of women from the PRESET Registry. Patients were followed for 1-year post-ASGES testing. Results: This study cohort included 288 women with a median age 57 years. The median body mass index was 29.2, with hyperlipidemia and hypertension present in 48% and 43% of patients, respectively. Median ASGES was 8.5 (range 1-40), with 218 (76%) patients having low (≤15) ASGES. Clinicians referred 9% (20/218) low ASGES versus 44% (31/70) elevated ASGES women for further cardiac evaluation (odds ratio 0.14, p < 0.0001, adjusted for patient demographics and clinical covariates). Across the score range, higher ASGES were associated with a higher likelihood of posttest cardiac referral. At 1-year follow-up, low ASGES women experienced fewer major adverse cardiac events than elevated ASGES women (1.3% vs. 4.2% respectively, p = 0.16). Conclusions: Incorporation of ASGES into the diagnostic workup demonstrated clinical utility by helping clinicians identify women less likely to benefit from further cardiac evaluation
Normalization and centering of array-based heterologous genome hybridization based on divergent control probes
<p>Abstract</p> <p>Background</p> <p>Hybridization of heterologous (non-specific) nucleic acids onto arrays designed for model-organisms has been proposed as a viable genomic resource for estimating sequence variation and gene expression in non-model organisms. However, conventional methods of normalization that assume equivalent distributions (such as quantile normalization) are inappropriate when applied to non-specific (heterologous) hybridization. We propose an algorithm for normalizing and centering intensity data from heterologous hybridization that makes no prior assumptions of distribution, reduces the false appearance of homology, and provides a way for researchers to confirm whether heterologous hybridization is suitable.</p> <p>Results</p> <p>Data are normalized by adjusting for Gibbs free energy binding, and centered by adjusting for the median of a common set of control probes assumed to be equivalently dissimilar for all species. This procedure was compared to existing approaches and found to be as successful as Loess normalization at detecting sequence variations (deletions) and even more successful than quantile normalization at reducing the accumulation of false positive probe matches between two related nematode species, <it>Caenorhabditis elegans </it>and <it>C. briggsae</it>. Despite the improvements, we still found that probe fluorescence intensity was too poorly correlated with sequence similarity to result in reliable detection of matching probe sequence.</p> <p>Conclusions</p> <p>Cross-species hybridizations can be a way to adapt genome-enabled tools for closely related non-model organisms, but data must be appropriately normalized and centered in a way that accommodates hybridization of nucleic acids with diverged sequence. For short, 25-mer probes, hybridization intensity alone may be insufficiently correlated with sequence similarity to allow reliable inference of homology at the probe level.</p
Recommended from our members
Control and Function of Arm Swing in Human Walking and Running
We investigated the control and function of arm swing in human walking and running to test the hypothesis that the arms act as
passive mass dampers powered by movement of the lower body, rather than being actively driven by the shoulder muscles. We
measured locomotor cost, deltoid muscle activity and kinematics in 10 healthy adult subjects while walking and running on a
treadmill in three experimental conditions: control; no arms (arms folded across the chest); and arm weights (weights worn at the
elbow). Decreasing and increasing the moment of inertia of the upper body in no arms and arm weights conditions, respectively,
had corresponding effects on head yaw and on the phase differences between shoulder and pelvis rotation, consistent with the
view of arms as mass dampers. Angular acceleration of the shoulders and arm increased with torsion of the trunk and shoulder,
respectively, but angular acceleration of the shoulders was not inversely related to angular acceleration of the pelvis or arm.
Restricting arm swing in no arms trials had no effect on locomotor cost. Anterior and posterior portions of the deltoid contracted
simultaneously rather than firing alternately to drive the arm. These results support a passive arm swing hypothesis for upper
body movement during human walking and running, in which the trunk and shoulders act primarily as elastic linkages between
the pelvis, shoulder girdle and arms, the arms act as passive mass dampers which reduce torso and head rotation, and upper
body movement is primarily powered by lower body movement.AnthropologyHuman Evolutionary Biolog
Co-involvement of Mitochondria and Endoplasmic Reticulum in Regulation of Apoptosis: Changes in Cytochrome c, Bcl-2 and Bax in the Hippocampus of Aluminum-treated Rabbits
Neurodegenerative diseases, including Alzheimer’s disease, are characterized by a progressive and selective loss of neurons. Apoptosis under mitochondrial control has been implicated in this neuronal death process, involving the release of cytochrome c into the cytoplasm and initiation of the apoptosis cascade. However, a growing body of evidence suggests an active role for the endoplasmic reticulum in regulating apoptosis, either independent of mitochondrial, or in concert with mitochondrial-initiated pathways. Members of the Bcl-2 family of proteins have been shown to either inhibit apoptosis, as is the case with Bcl-2, or to promote it, in the case of Bax. Investigations in our laboratory have focused on neuronal injury resulting from the intracisternal administration of aluminum maltolate to New Zealand white rabbits, an animal system relevant to a study of human disease in that it reflects many of the histological and biochemical changes associated with Alzheimer’s disease. Here we report that treatment of young adult rabbits with aluminum maltolate induces both cytochrome c translocation into brain cytosol, and caspase-3 activation. Furthermore, as assessed by Western blot analysis, these effects are accompanied by a decrease in Bcl-2 and an increase in Bax reactivity in the endoplasmic reticulum
Recommended from our members
The Human Gluteus Maximus and its Role in Running
The human gluteus maximus is a distinctive muscle in terms of size, anatomy and function compared to apes and other non-human primates. Here we employ electromyographic and kinematic analyses of human subjects to test the hypothesis that the human gluteus maximus plays a more important role in running than walking. The results indicate that the gluteus maximus is mostly quiescent with low levels of activity during level and uphill walking, but increases substantially in activity
and alters its timing with respect to speed during running. The major functions of the gluteus maximus during running are to control flexion of the trunk on the stanceside and to decelerate the swing leg; contractions of the stance-side gluteus maximus may also help to control
flexion of the hip and to extend the thigh. Evidence for when the gluteus maximus became enlarged in human evolution is equivocal, but the muscle’s minimal functional role during walking supports the hypothesis that enlargement of the gluteus maximus was likely important
in the evolution of hominid running capabilities.Anthropolog
- …