207 research outputs found

    Correlated theory of triplet photoinduced absorption in phenylene-vinylene chains

    Full text link
    In this paper we present results of large-scale correlated calculations of triplet photoinduced absorption (PA) spectrum of oligomers of poly-(para)phenylenevinylene (PPV) containing up to five phenyl rings. In particular, the high-energy features in the triplet PA spectrum of oligo-PPVs are the focus of this study, which, so far, have not been investigated theoretically, or experimentally. The calculations were performed using the Pariser-Parr-Pople (PPP) model Hamiltonian, and many-body effects were taken into account by means of multi-reference singles-doubles configuration interaction procedure (MRSDCI), without neglecting any molecular orbitals. The computed triplet PA spectrum of oligo-PPVs exhibits rich structure consisting of alternating peaks of high and low intensities. The predicted higher energy features of the triplet spectrum can be tested in future experiments. Additionally, theoretical estimates of exciton binding energy are also presented.Comment: To appear in Phys. Rev.

    Theoretical Study on Reactions of Triplet Excited State Thioxanthone with Indole

    Get PDF
    In the present work, a theoretical study on the deactivation of triplet excited (T1) state thioxanthone (TX) by indole (INH) was performed, based on density functional theory calculations. Three feasible pathways, namely direct electron transfer from INH to T1 state TX, electron transfer followed by proton transfer from INH.+ to TX.−, and H-atom transfer from nitrogen of INH to keto oxygen of T1 state TX, were proposed theoretically to be involved in T1 state TX deactivation by INH

    Room temperature triplet state spectroscopy of organic semiconductors

    Get PDF
    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is ‘dark’ with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.United States. Dept. of Energy. Center for Excitonics (Award DE-SC0001088

    Photoinduced absorption and photoluminescence in poly(2,5-dimethoxy-p- phenylene vinylene)

    Get PDF
    We report a study of the photoexcited states in the conjugated polymer poly(2,5-dimethoxy-p-phenylene vinylene). Photoluminescence due to radiative recombination of singlet excitons is observed at energiesjust below the onset of the pi-pi* absorption band at 2.1 eV. Photoinduced absorption at 80 K shows bands peaking at 0.68, 1.35, and 1.80 eV. The features at 0.68 and 1.8 eV are associated with the same excited state which we propose is a doubly charged bipolaron, while the third at 1.35 eV is unrelated. We assign this 1.35-eV absorption to a triplet-triplet transition of a triplet exciton. The bipolarons are long lived with significant numbers surviving in excess of 100 ms at 80 K, and have a weak temperature dependence such that photoinduced absorption is readily detectable even at room temperature. The triplet exciton has a lifetime of order 2.5 ms at 80 K but this falls rapidly at higher temperature and the response is not detected at room temperature. We contrast these results with those obtained previously for the related poly(arylene vinylene) polymers poly(p-phenylene vinylene), and poly(2,5-thienylene vinylene) and for other conjugated polymers, and draw attention to the important role played in the photophysics of these materials by neutral excited states

    Probing the interplay between factors determining reaction rates on silica gel using termolecular systems

    Get PDF
    This article was published in the journal, Photochemical and Photobiological Sciences [© Royal Society of Chemistry and Owner Societies]. The definitive version is available at: http://dx.doi.org/10.1039/c2pp25171jIn this study we have compared energy and electron transfer reactions in termolecular systems using a nanosecond diffuse reflectance laser flash photolysis technique. We have previously investigated these processes on silica gel surfaces for bimolecular systems and electron transfer in termolecular systems. The latter systems involved electron transfer between three arene molecules with azulene acting as a molecular shuttle. In this study we present an alternative electron transfer system using trans β-carotene as an electron donor in order to effectively immobilise all species except the shuttle, providing the first unambiguous evidence for radical ion mobility. In the energy transfer system we use naphthalene, a structural isomer of azulene, as the shuttle, facilitating energy transfer from a selectively excited benzophenone sensitiser to 9-cyanoanthracene. Bimolecular rate constants for all of these processes have been measured and new insights into the factors determining the rates of these reactions on silica gel have been obtained
    • …
    corecore