7 research outputs found

    Plasma properties of suprathermal electrons near comet 67P/Churyumov-Gerasimenko with Rosetta

    No full text
    Context. The Rosetta spacecraft escorted comet 67P/Churyumov-Gerasimenko from 2014 to September 2016. The mission provided in situ observations of the cometary plasma during different phases of the cometary activity, which enabled us to better understand its evolution as a function of heliocentric distance. Aims. In this study, different electron populations, called warm and hot, observed by the Ion and Electron Sensor (IES) of the Rosetta Plasma Consortium (RPC) are investigated near the comet during the escorting phase of the Rosetta mission. Methods. The estimates for the suprathermal electron densities and temperatures were extracted using IES electron data by fitting a double-kappa function to the measured velocity distributions. The fitting results were validated using observations from other RPC instruments. We give upgraded estimates for the warm and hot population densities compared to values previously shown in literature. Results. The fitted density and temperature estimates for both electron populations seen by IES are expressed as a function of heliocentric distance to study their evolution with the cometary activity. In addition, we studied the dependence between the electron properties and cometocentric distance. Conclusions. We observed that when the neutral outgassing rate of the nucleus is high (i.e., near perihelion) the suprathermal electrons are well characterized by a double-kappa distribution. In addition, warm and hot populations show a significant dependence with the heliocentric distance. The populations become clearly denser near perihelion while their temperatures are observed to remain almost constant. Moreover, the warm electron population density is shown to be strongly dependent on the radial distance from the comet. Finally, based on our results we reject the hypothesis that hot electron population seen by IES consists of solely suprathermal (halo) solar wind electrons, while we suggest that the hot electron population mainly consists of solar wind thermal electrons that have undergone acceleration near the comet

    Cometary plasma response to interplanetary corotating interaction regions during 2016 June-September: a quantitative study by the Rosetta Plasma Consortium

    No full text
    Four interplanetary corotating interaction regions (CIRs) were identified during 2016 June–September by the Rosetta Plasma Consortium (RPC) monitoring in situ the plasma environment of the comet 67P/Churyumov–Gerasimenko (67P) at heliocentric distances of ∌3–3.8 au. The CIRs, formed in the interface region between low- and high-speed solar wind streams with speeds of ∌320–400 km s−1 and ∌580–640 km s−1, respectively, are characterized by relative increases in solar wind proton density by factors of ∌13–29, in proton temperature by ∌7–29, and in magnetic field by ∌1–4 with respect to the pre-CIR values. The CIR boundaries are well defined with interplanetary discontinuities. Out of 10 discontinuities, four are determined to be forward waves and five are reverse waves, propagating at ∌5–92 per cent of the magnetosonic speed at angles of ∌20°–87° relative to ambient magnetic field. Only one is identified to be a quasi-parallel forward shock with magnetosonic Mach number of ∌1.48 and shock normal angle of ∌41°. The cometary ionosphere response was monitored by Rosetta from cometocentric distances of ∌4–30 km. A quiet time plasma density map was developed by considering dependences on cometary latitude, longitude, and cometocentric distance of Rosetta observations before and after each of the CIR intervals. The CIRs lead to plasma density enhancements of ∌500–1000 per cent with respect to the quiet time reference level. Ionospheric modelling shows that increased ionization rate due to enhanced ionizing (>12–200 eV) electron impact is the prime cause of the large cometary plasma density enhancements during the CIRs. Plausible origin mechanisms of the cometary ionizing electron enhancements are discussed

    Vertical structure of the near-surface expanding ionosphere of comet 67P probed by Rosetta

    Get PDF
    The plasma environment has been measured for the first time near the surface of a comet. This unique data set has been acquired at 67P/Churyumov–Gerasimenko during ESA/Rosetta spacecraft's final descent on 2016 September 30. The heliocentric distance was 3.8 au and the comet was weakly outgassing. Electron density was continuously measured with Rosetta Plasma Consortium (RPC)–Mutual Impedance Probe (MIP) and RPC–LAngmuir Probe (LAP) during the descent from a cometocentric distance of 20 km down to the surface. Data set from both instruments have been cross-calibrated for redundancy and accuracy. To analyse this data set, we have developed a model driven by Rosetta Orbiter Spectrometer for Ion and Neutral Analysis–COmetary Pressure Sensor total neutral density. The two ionization sources considered are solar extreme ultraviolet radiation and energetic electrons. The latter are estimated from the RPC–Ion and Electron Sensor (IES) and corrected for the spacecraft potential probed by RPC–LAP. We have compared the results of the model to the electron densities measured by RPC–MIP and RPC–LAP at the location of the spacecraft. We find good agreement between observed and modelled electron densities. The energetic electrons have access to the surface of the nucleus and contribute as the main ionization source. As predicted, the measurements exhibit a peak in the ionospheric density close to the surface. The location and magnitude of the peak are estimated analytically. The measured ionospheric densities cannot be explained with a constant outflow velocity model. The use of a neutral model with an expanding outflow is critical to explain the plasma observations
    corecore