217 research outputs found

    Three-dimensional Ising model in the fixed-magnetization ensemble: a Monte Carlo study

    Full text link
    We study the three-dimensional Ising model at the critical point in the fixed-magnetization ensemble, by means of the recently developed geometric cluster Monte Carlo algorithm. We define a magnetic-field-like quantity in terms of microscopic spin-up and spin-down probabilities in a given configuration of neighbors. In the thermodynamic limit, the relation between this field and the magnetization reduces to the canonical relation M(h). However, for finite systems, the relation is different. We establish a close connection between this relation and the probability distribution of the magnetization of a finite-size system in the canonical ensemble.Comment: 8 pages, 2 Postscript figures, uses RevTe

    The Dynamic Exponent of the Two-Dimensional Ising Model and Monte Carlo Computation of the Sub-Dominant Eigenvalue of the Stochastic Matrix

    Get PDF
    We introduce a novel variance-reducing Monte Carlo algorithm for accurate determination of autocorrelation times. We apply this method to two-dimensional Ising systems with sizes up to 15×1515 \times 15, using single-spin flip dynamics, random site selection and transition probabilities according to the heat-bath method. From a finite-size scaling analysis of these autocorrelation times, the dynamical critical exponent zz is determined as z=2.1665z=2.1665 (12)

    Development and Validation of an On-Line Water Toxicity Sensor with Immobilized Luminescent Bacteria for On-Line Surface Water Monitoring.

    Get PDF
    Surface water used for drinking water production is frequently monitored in The Netherlands using whole organism biomonitors, with for exampleDaphnia magnaorDreissenamussels, which respond to changes in the water quality. However, not all human-relevant toxic compounds can be detected by these biomonitors. Therefore, a new on-line biosensor has been developed, containing immobilized genetically modified bacteria, which respond to genotoxicity in the water by emitting luminescence. The performance of this sensor was tested under laboratory conditions, as well as under field conditions at a monitoring station along the river Meuse in The Netherlands. The sensor was robust and easy to clean, with inert materials, temperature control and nutrient feed for the reporter organisms. The bacteria were immobilized in sol-gel on either an optical fiber or a glass slide and then continuously exposed to water. Since the glass slide was more sensitive and robust, only this setup was used in the field. The sensor responded to spikes of genotoxic compounds in the water with a minimal detectable concentration of 0.01 mg/L mitomycin C in the laboratory and 0.1 mg/L mitomycin C in the field. With further optimization, which should include a reduction in daily maintenance, the sensor has the potential to become a useful addition to the currently available biomonitors

    Aging induced changes on NEXAFS fingerprints in individual combustion particles

    Get PDF
    Soot particles can significantly influence the Earth's climate by absorbing and scattering solar radiation as well as by acting as cloud condensation nuclei. However, despite their environmental (as well as economic and political) importance, the way these properties are affected by atmospheric processing of the combustion exhaust gases is still a subject of discussion. In this work, individual soot particles emitted from two different vehicles, a EURO 2 transporter, a EURO 3 passenger car, and a wood stove were investigated on a single-particle basis. The emitted exhaust, including the particulate and the gas phase, was processed in a smog chamber with artificial solar radiation. Single particle specimens of both unprocessed and aged soot were characterized using near edge X-ray absorption fine structure spectroscopy (NEXAFS) and scanning electron microscopy. Comparison of NEXAFS spectra from the unprocessed particles and those resulting from exhaust photooxidation in the chamber revealed changes in the carbon functional group content. For the wood stove emissions, these changes were minor, related to the relatively mild oxidation conditions. For the EURO 2 transporter emissions, the most apparent change was that of carboxylic carbon from oxidized organic compounds condensing on the primary soot particles. For the EURO 3 car emissions oxidation of primary soot particles upon photochemical aging has likely contributed as well. Overall, the changes in the NEXAFS fingerprints were in qualitative agreement with data from an aerosol mass spectrometer. Furthermore, by taking full advantage of our in situ microreactor concept, we show that the soot particles from all three combustion sources changed their ability to take up water under humid conditions upon photochemical aging of the exhaust. Due to the selectivity and sensitivity of the NEXAFS technique for the water mass, also small amounts of water taken up into the internal voids of agglomerated particles could be detected. Because such small amounts of water uptake do not lead to measurable changes in particle diameter, it may remain beyond the limits of volume growth measurements, especially for larger agglomerated particles

    Monte Carlo computation of correlation times of independent relaxation modes at criticality

    Get PDF
    We investigate aspects of universality of Glauber critical dynamics in two dimensions. We compute the critical exponent zz and numerically corroborate its universality for three different models in the static Ising universality class and for five independent relaxation modes. We also present evidence for universality of amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality class is characterized by a single non-universal metric factor which determines the overall time scale. This paper also discusses in detail the variational and projection methods that are used to compute relaxation times with high accuracy

    Ising Universality in Three Dimensions: A Monte Carlo Study

    Full text link
    We investigate three Ising models on the simple cubic lattice by means of Monte Carlo methods and finite-size scaling. These models are the spin-1/2 Ising model with nearest-neighbor interactions, a spin-1/2 model with nearest-neighbor and third-neighbor interactions, and a spin-1 model with nearest-neighbor interactions. The results are in accurate agreement with the hypothesis of universality. Analysis of the finite-size scaling behavior reveals corrections beyond those caused by the leading irrelevant scaling field. We find that the correction-to-scaling amplitudes are strongly dependent on the introduction of further-neighbor interactions or a third spin state. In a spin-1 Ising model, these corrections appear to be very small. This is very helpful for the determination of the universal constants of the Ising model. The renormalization exponents of the Ising model are determined as y_t = 1.587 (2), y_h = 2.4815 (15) and y_i = -0.82 (6). The universal ratio Q = ^2/ is equal to 0.6233 (4) for periodic systems with cubic symmetry. The critical point of the nearest-neighbor spin-1/2 model is K_c=0.2216546 (10).Comment: 25 pages, uuencoded compressed PostScript file (to appear in Journal of Physics A

    Adsorption of Reactive Particles on a Random Catalytic Chain: An Exact Solution

    Full text link
    We study equilibrium properties of a catalytically-activated annihilation A+A0A + A \to 0 reaction taking place on a one-dimensional chain of length NN (NN \to \infty) in which some segments (placed at random, with mean concentration pp) possess special, catalytic properties. Annihilation reaction takes place, as soon as any two AA particles land onto two vacant sites at the extremities of the catalytic segment, or when any AA particle lands onto a vacant site on a catalytic segment while the site at the other extremity of this segment is already occupied by another AA particle. Non-catalytic segments are inert with respect to reaction and here two adsorbed AA particles harmlessly coexist. For both "annealed" and "quenched" disorder in placement of the catalytic segments, we calculate exactly the disorder-average pressure per site. Explicit asymptotic formulae for the particle mean density and the compressibility are also presented.Comment: AMSTeX, 27 pages + 4 figure

    A thermodynamically self-consistent theory for the Blume-Capel model

    Full text link
    We use a self-consistent Ornstein-Zernike approximation to study the Blume-Capel ferromagnet on three-dimensional lattices. The correlation functions and the thermodynamics are obtained from the solution of two coupled partial differential equations. The theory provides a comprehensive and accurate description of the phase diagram in all regions, including the wing boundaries in non-zero magnetic field. In particular, the coordinates of the tricritical point are in very good agreement with the best estimates from simulation or series expansion. Numerical and analytical analysis strongly suggest that the theory predicts a universal Ising-like critical behavior along the λ\lambda-line and the wing critical lines, and a tricritical behavior governed by mean-field exponents.Comment: 11 figures. to appear in Physical Review
    corecore