50 research outputs found

    The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation

    Get PDF
    It has been reported that nontransformed mammalian cells become arrested during G1 in the absence of centrioles (Hinchcliffe, E., F. Miller, M. Cham, A. Khodjakov, and G. Sluder. 2001. Science. 291:1547–1550). Here, we show that removal of resident centrioles (by laser ablation or needle microsurgery) does not impede cell cycle progression in HeLa cells. HeLa cells born without centrosomes, later, assemble a variable number of centrioles de novo. Centriole assembly begins with the formation of small centrin aggregates that appear during the S phase. These, initially amorphous “precentrioles” become morphologically recognizable centrioles before mitosis. De novo–assembled centrioles mature (i.e., gain abilities to organize microtubules and replicate) in the next cell cycle. This maturation is not simply a time-dependent phenomenon, because de novo–formed centrioles do not mature if they are assembled in S phase–arrested cells. By selectively ablating only one centriole at a time, we find that the presence of a single centriole inhibits the assembly of additional centrioles, indicating that centrioles have an activity that suppresses the de novo pathway

    The spindle assembly checkpoint is satisfied in the absence of interkinetochore tension during mitosis with unreplicated genomes

    Get PDF
    The accuracy of chromosome segregation is enhanced by the spindle assembly checkpoint (SAC). The SAC is thought to monitor two distinct events: attachment of kinetochores to microtubules and the stretch of the centromere between the sister kinetochores that arises only when the chromosome becomes properly bioriented. We examined human cells undergoing mitosis with unreplicated genomes (MUG). Kinetochores in these cells are not paired, which implies that the centromere cannot be stretched; however, cells progress through mitosis. A SAC is present during MUG as cells arrest in response to nocodazole, taxol, or monastrol treatments. Mad2 is recruited to unattached MUG kinetochores and released upon their attachment. In contrast, BubR1 remains on attached kinetochores and exhibits a level of phosphorylation consistent with the inability of MUG spindles to establish normal levels of centromere tension. Thus, kinetochore attachment to microtubules is sufficient to satisfy the SAC even in the absence of interkinetochore tension

    Kinetochores Use a Novel Mechanism for Coordinating the Dynamics of Individual Microtubules

    Get PDF
    SummaryChromosome alignment during mitosis is frequently accompanied by a dynamic switching between elongation and shortening of kinetochore fibers (K-fibers) that connect kinetochores and spindle poles [1, 2]. In higher eukaryotes, mature K-fibers consist of 10–30 kinetochore microtubules (kMTs) whose plus ends are embedded in the kinetochore [1–3]. A critical and long-standing question is how the dynamics of individual kMTs within the K-fiber are coordinated [1–5]. We have addressed this question by using electron tomography to determine the polymerization/depolymerization status of individual kMTs in the K-fibers of PtK1 and Drosophila S2 cells. Surprisingly, we find that the plus ends of two-thirds of kMTs are in a depolymerizing state, even when the K-fiber exhibits net tubulin incorporation at the plus end [6–8]. Furthermore, almost all individual K-fibers examined had a mixture of kMTs in the polymerizing and depolymerizing states. Therefore, although K-fibers elongate and shrink as a unit, the dynamics of individual kMTs within a K-fiber are not coordinated at any given moment. Our results suggest a novel control mechanism through which attachment to the kinetochore outer plate prevents shrinkage of kMTs. We discuss the ramifications of this new model on the regulation of chromosome movement and the stability of K-fibers

    Low α2β1 Integrin Function Enhances the Proliferation of Fibroblasts from Patients with Idiopathic Pulmonary Fibrosis by Activation of the β-Catenin Pathway

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive and incurable fibroproliferative disorder characterized by unrelenting proliferation of fibroblasts and their deposition of collagen within alveoli, resulting in permanently scarred, nonfunctional airspaces. Normally, polymerized collagen suppresses fibroblast proliferation and serves as a physiological restraint to limit fibroproliferation after tissue injury. The IPF fibroblast, however, is a pathologically altered cell that has acquired the capacity to elude the proliferation-suppressive effects of polymerized collagen. The mechanism for this phenomenon remains incompletely understood. Here, we demonstrate that expression of α2β1 integrin, a major collagen receptor, is pathologically low in IPF fibroblasts interacting with polymerized collagen. Low integrin expression in IPF fibroblasts is associated with a failure to induce PP2A phosphatase activity, resulting in abnormally high levels of phosphorylated (inactive) GSK-3β and high levels of active β-catenin in the nucleus. Knockdown of β-catenin in IPF fibroblasts inhibits their ability to proliferate on collagen. Interdiction of α2β1 integrin in control fibroblasts reproduces the IPF phenotype and leads to the inability of these cells to activate PP2A, resulting in high levels of phosphorylated GSK-3β and active β-catenin and in enhanced proliferation on collagen. Our findings indicate that the IPF fibroblast phenotype is characterized by low α2β1 integrin expression, resulting in a failure of integrin to activate PP2A phosphatase, which permits inappropriate activation of the β-catenin pathway

    Identification of a Cell-of-Origin for Fibroblasts Comprising the Fibrotic Reticulum in Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a progressive disease of the middle aged and elderly with a prevalence of one million persons worldwide. The fibrosis spreads from affected alveoli into contiguous alveoli, creating a reticular network that leads to death by asphyxiation. Lung fibroblasts from patients with IPF have phenotypic hallmarks, distinguishing them from their normal counterparts: pathologically activated Akt signaling axis, increased collagen and α-smooth muscle actin expression, distinct gene expression profile, and ability to form fibrotic lesions in model organisms. Despite the centrality of these fibroblasts in disease pathogenesis, their origin remains uncertain. Here, we report the identification of cells in the lungs of patients with IPF with the properties of mesenchymal progenitors. In contrast to progenitors isolated from nonfibrotic lungs, IPF mesenchymal progenitor cells produce daughter cells manifesting the full spectrum of IPF hallmarks, including the ability to form fibrotic lesions in zebrafish embryos and mouse lungs, and a transcriptional profile reflecting these properties. Morphological analysis of IPF lung tissue revealed that mesenchymal progenitor cells and cells with the characteristics of their progeny comprised the fibrotic reticulum. These data establish that the lungs of patients with IPF contain pathological mesenchymal progenitor cells that are cells of origin for fibrosis-mediating fibroblasts. These fibrogenic mesenchymal progenitors and their progeny represent an unexplored target for novel therapies to interdict fibrosis

    Control of daughter centriole formation by the pericentriolar material

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Cell Biology 10 (2008): 322-328, doi:10.1038/ncb1694.Controlling the number of its centrioles is vital for the cell as supernumerary centrioles result in multipolar mitosis and genomic instability. Normally, just one daughter centriole forms on each mature (mother) centriole; however, a mother centriole can produce multiple daughters within a single cell cycle. The mechanisms that prevent centriole ‘overduplication’ are poorly understood. Here we use laser microsurgery to test the hypothesis that attachment of the daughter centriole to the wall of the mother inhibits formation of additional daughters. We show that physical removal of the daughter induces reduplication of the mother in Sarrested cells. Under conditions when multiple daughters simultaneously form on a single mother, all of these daughters must be removed to induce reduplication. Intriguingly, the number of daughter centrioles that form during reduplication does not always match the number of ablated daughter centrioles. We also find that exaggeration of the pericentriolar material (PCM) via overexpression of the PCM protein pericentrin in S-arrested CHO cells induces formation of numerous daughter centrioles. We propose that that the size of the PCM cloud associated with the mother centriole restricts the number of daughters that can form simultaneously.This work was supported by grants from the National Institutes of Health (GM GM59363) and the Human Frontiers Science Program (RGP0064). Construction of our laser microsurgery workstation was supported in part by a fellowship from Nikon/Marine Biological Laboratory (A.K.)

    hPOC5 is a centrin-binding protein required for assembly of full-length centrioles

    Get PDF
    Centrin has been shown to be involved in centrosome biogenesis in a variety of eukaryotes. In this study, we characterize hPOC5, a conserved centrin-binding protein that contains Sfi1p-like repeats. hPOC5 is localized, like centrin, in the distal portion of human centrioles. hPOC5 recruitment to procentrioles occurs during G2/M, a process that continues up to the full maturation of the centriole during the next cell cycle and is correlated with hyperphosphorylation of the protein. In the absence of hPOC5, RPE1 cells arrest in G1 phase, whereas HeLa cells show an extended S phase followed by cell death. We show that hPOC5 is not required for the initiation of procentriole assembly but is essential for building the distal half of centrioles. Interestingly, the hPOC5 family reveals an evolutionary divergence between vertebrates and organisms like Drosophila melanogaster or Caenorhabditis elegans, in which the loss of hPOC5 may correlate with the conspicuous differences in centriolar structure

    IPF fibroblasts are desensitized to type I collagen matrix-induced cell death by suppressing low autophagy via aberrant Akt/mTOR kinases.

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a chronic, lethal interstitial lung disease in which the aberrant PTEN/Akt axis plays a major role in conferring a survival phenotype in response to the cell death inducing properties of type I collagen matrix. The underlying mechanism by which IPF fibroblasts become desensitized to polymerized collagen, thereby eluding collagen matrix-induced cell death has not been fully elucidated. We hypothesized that the pathologically altered PTEN/Akt axis suppresses autophagy via high mTOR kinase activity, which subsequently desensitizes IPF fibroblasts to collagen matrix induced cell death. We found that the autophagosome marker LC3-2 expression is suppressed, while mTOR activity remains high when IPF fibroblasts are cultured on collagen. However, LC3-2 expression increased in response to IPF fibroblast attachment to collagen in the presence of rapamycin. In addition, PTEN over-expression or Akt inhibition suppressed mTOR activity, thereby increasing LC3-2 expression in IPF fibroblasts. Furthermore, the treatment of IPF fibroblasts over-expressing PTEN or dominant negative Akt with autophagy inhibitors increased IPF fibroblast cell death. Enhanced p-mTOR expression along with low LC3-2 expression was also found in myofibroblasts within the fibroblastic foci from IPF patients. Our data show that the aberrant PTEN/Akt/mTOR axis desensitizes IPF fibroblasts from polymerized collagen driven stress by suppressing autophagic activity, which produces a viable IPF fibroblast phenotype on collagen. This suggests that the aberrantly regulated autophagic pathway may play an important role in maintaining a pathological IPF fibroblast phenotype in response to collagen rich environment

    Testing if mutated twist1a and twist1b genes in zebrafish result in open anterior neural tube

    No full text
    Biology Major, Swenson College of Science and Engineering, University of Minnesota DuluthUniversity of Minnesota's Undergraduate Research Opportunities Progra

    Suppression of autophagic activity in IPF fibroblasts over-expressing PTEN or dominant negative Akt increases IPF fibroblast cell death on collagen.

    No full text
    <p>A) 3×10<sup>4</sup> IPF fibroblasts infected with adenovirus expressing wild type PTEN (WP), dominant negative Akt (DA) or empty vector (GFP) were cultured on polymerized collagen in the presence of 100 µM of 3MA or DMSO in serum free medium and viable cells were measured at 24 h. <i>p</i><0.01 versus GFP, <i>p</i><0.02 versus GFP. B) IPF fibroblasts infected with adenovirus expressing wild type PTEN (WP), dominant negative Akt (DA) or empty vector (GFP) were cultured on polymerized collagen in the presence of 100 µM of CQ or water in serum free medium and viable cells were measured at 24 h. <i>p</i><0.01 versus GFP, <i>p</i><0.02 versus GFP. C) 3x10<sup>4</sup> control or IPF fibroblasts grown on 96 well plates coated with polymerized collagen were treated with 100 µM of 3 methyl adenine (MA) and chloroquine (CQ) together, and viable cells were measured at 24 h in serum free medium. Shown is the % change in viable control or IPF fibroblasts treated with 3MA and CQ on collagen matrix. <i>p</i><0.01 versus control fibroblasts. D) IPF fibroblasts infected with adenovirus expressing wild type PTEN (WP), dominant negative Akt (DA) or empty vector (GFP) cultured on polymerized collagen matrix were treated with both 100 µM of 3MA and CQ together (3MA+CQ), and viable cells were measured at 24 h. <i>p</i><0.01 versus GFP, <i>p</i><0.03 versus GFP, <i>p</i><0.03 versus DMSO/water as indicated. All assays were performed in triplicate using IPF cells shown in lane 5 or control fibroblasts in lane 3 in an upper panel in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0094616#pone-0094616-g001" target="_blank">Fig 1A</a>.</p
    corecore