14 research outputs found

    Impact des pratiques de gestion sur le stockage du Carbone dans le sol des écosystèmes prairiaux

    Get PDF
    The fast increase of greenhouse gases in the atmosphere, such as carbon dioxide, due to human activities is consider as the main cause of actual climate change. Terrestrial ecosystem are considered as a huge "sink" of C and may contribute to decrease greenhouse gases. Permanent grasslands cover 40% of land and their soil may contribute to sequester C (GIEC 2001). However, the processes involved and their regulations remain to be specified. The aim of the thesis was to analyze the effect of grazing management on soil C storage. This analysis was made from data acquired on two long term permanent grassland sites (SOERE ACBB) and by studying C fluxes between the different agroecosystem compartments under different grazing intensities for i) estimating our capacity to measure soil C storage after 10 years of grazing treatments by comparing two methods (soil inventories vs net carbon storage measurements), ii) to provide knowledge on the mechanisms and regulations affecting the dynamics of soil C sequestration. Comparing results of both methods, measurements indicated a net C sequestration in soil, with an average sequestration rate of 2.21 t C ha-1 yr-1 and 2.29 t C ha-1 year-1 and no significant difference between treatment but a tendency to a higher sequestration with more intensive management. Each method provides access to different information. The approach with flux towers allows a better understanding of the role and interactions between climate and practices on C fluxes in grasslands. Soil inventories showed carbon is store in deeper soil layers. While plant communities have evolved as a result of differentiated grazing treatments, measurements show no changes in total C stocks and particulate organic matter. Analysis of C fluxes after 7 years of differentiate grazing treatments, showed that treatments with low or zero grazing intensity led to a reduction of carbon fluxes between the compartments of the continuum of degradation, while carbon stocks in roots and POM were not affected by treatments. A complementary study conducted to estimate root production indicates that the response of roots (stocks and production) and stocks of particulate organic matter may be partly decoupled from the response of the aerial vegetation compartment. This study indicates that a more integrative approach on ecosystem functioning is necessary to increase our ability to predict the impact of management practices on C storage in grassland.La rapide augmentation des gaz à effet de serre (GES) dans l’atmosphère - dont le CO2 – due aux activités humaines est considérée comme responsable des changements climatiques en cours et futurs. Les écosystèmes terrestres sont potentiellement des "puits" importants de C et pourraient contribuer à l'atténuation des GES. Les prairies permanentes (steppes, savanes, prairies de montagne, ...) couvrent 40% de la surface terrestre (hors calotte glaciaire) et leurs sols représentent potentiellement un énorme "puits" permettant de stocker du C naturellement (GIEC 2001). Cependant, les processus impliqués et leur régulation restent à préciser. L’objectif de la thèse était d’analyser l’effet des pratiques de pâturage sur le stockage de C dans le sol. Cette analyse a été réalisée à partir de données acquises sur deux dispositifs ‘long terme’ en prairie permanente (SOERE ACBB) et en s’intéressant aux flux de C entre les différents compartiments de l’agro-écosystème sous différentes intensités de pâturage afin i) d’étudier notre capacité à estimer le stockage de C dans le sol après 10 ans d’application de traitement, en comparant deux méthodes (méthode utilisant des tours à flux et mesure du stock de C du sol) ii) d’apporter des connaissances sur les mécanismes et régulations agissant sur les dynamiques de stockage du C. Les résultats de la comparaison des deux méthodes de mesures testées ont indiqué une séquestration nette de C dans le sol, avec un taux de séquestration moyen mesuré avec les deux méthodes de 2.21 t C ha-1 an-1 et de 2.29 t C ha-1 an-1, sans différence significative entre traitements, mais avec une tendance à une séquestration plus élevée avec la gestion plus intensive. Chaque méthode permet d’accéder à des informations différentes. L'approche avec les tours à flux permet d'identifier des interactions entre le climat et les pratiques de gestion sur les flux de C dans les prairies. Les inventaires de sol ont permis de montrer que le carbone se stocke également dans les couches plus profondes de sol. Alors que les communautés végétales ont évolué sous l’effet des traitements différenciés de pâturage, les mesures ne montrent pas d’évolution des stocks de C totaux ni des matières organiques particulaires. L’analyse des flux de C entre les différents compartiments de l'écosystème, après 7 ans d’application des traitements, montre que les traitements avec une intensité faible ou nulle ont conduit à une réduction des flux de carbone entre les compartiments du continuum de dégradation du C, tandis que les stocks de carbone des racines et des POM ne sont pas affectés par les traitements. Une étude complémentaire conduite pour estimer les productions racinaires indique que la réponse des racines (stocks et production) et des stocks de matières organiques particulaires pourrait être en partie découplée de la réponse du compartiment aérien de la végétation. A l’issue de cette étude, il nous apparaît qu’une approche plus intégrative du fonctionnement de l’écosystème est nécessaire pour accroître notre capacité de prédiction de l’impact des pratiques sur le stockage du C en prairie

    Intra and inter-annual climatic conditions have stronger effect than grazing intensity on root growth of permanent grasslands

    Get PDF
    Understanding how direct and indirect changes in climatic conditions, management, and species composition affect root production and root traits is of prime importance for grassland C sequestration service delivery. We studied during two years the dynamics of root mass production with ingrowth-cores and annual above- and below-ground biomass (ANPP, BNPP) of upland fertile grasslands subjected for 10 years to a gradient of herbage utilization by grazing. We observed strong seasonal root production across treatments in both a wet and a dry year but response to grazing intensity was hardly observed within growing seasons. In abandonment, spring and autumn peaks of root growth were delayed by about one month compared to cattle treatments, possibly due to later canopy green-up and lower soil temperature. BNPP was slightly lower in abandonment compared to cattle treatments only during the dry year, whereas this effect on ANPP was observed the wet year. In response to drought, the root-to-shoot biomass ratio declined in the abandonment but not in the cattle treatment, underlining higher resistance to drought of grazed grassland communities. Rotational grazing pressure and climatic conditions variability had very limited effects on root growth seasonality although drought had stronger effects on BNPP than on ANPP

    Impacts of management practices on carbone storage in grasslands

    No full text
    La rapide augmentation des gaz à effet de serre (GES) dans l’atmosphère - dont le CO2 – due aux activités humaines est considérée comme responsable des changements climatiques en cours et futurs. Les écosystèmes terrestres sont potentiellement des "puits" importants de C et pourraient contribuer à l'atténuation des GES. Les prairies permanentes (steppes, savanes, prairies de montagne, ...) couvrent 40% de la surface terrestre (hors calotte glaciaire) et leurs sols représentent potentiellement un énorme "puits" permettant de stocker du C naturellement (GIEC 2001). Cependant, les processus impliqués et leur régulation restent à préciser. L’objectif de la thèse était d’analyser l’effet des pratiques de pâturage sur le stockage de C dans le sol. Cette analyse a été réalisée à partir de données acquises sur deux dispositifs ‘long terme’ en prairie permanente (SOERE ACBB) et en s’intéressant aux flux de C entre les différents compartiments de l’agro-écosystème sous différentes intensités de pâturage afin i) d’étudier notre capacité à estimer le stockage de C dans le sol après 10 ans d’application de traitement, en comparant deux méthodes (méthode utilisant des tours à flux et mesure du stock de C du sol) ii) d’apporter des connaissances sur les mécanismes et régulations agissant sur les dynamiques de stockage du C. Les résultats de la comparaison des deux méthodes de mesures testées ont indiqué une séquestration nette de C dans le sol, avec un taux de séquestration moyen mesuré avec les deux méthodes de 2.21 t C ha-1 an-1 et de 2.29 t C ha-1 an-1, sans différence significative entre traitements, mais avec une tendance à une séquestration plus élevée avec la gestion plus intensive. Chaque méthode permet d’accéder à des informations différentes. L'approche avec les tours à flux permet d'identifier des interactions entre le climat et les pratiques de gestion sur les flux de C dans les prairies. Les inventaires de sol ont permis de montrer que le carbone se stocke également dans les couches plus profondes de sol. Alors que les communautés végétales ont évolué sous l’effet des traitements différenciés de pâturage, les mesures ne montrent pas d’évolution des stocks de C totaux ni des matières organiques particulaires. L’analyse des flux de C entre les différents compartiments de l'écosystème, après 7 ans d’application des traitements, montre que les traitements avec une intensité faible ou nulle ont conduit à une réduction des flux de carbone entre les compartiments du continuum de dégradation du C, tandis que les stocks de carbone des racines et des POM ne sont pas affectés par les traitements. Une étude complémentaire conduite pour estimer les productions racinaires indique que la réponse des racines (stocks et production) et des stocks de matières organiques particulaires pourrait être en partie découplée de la réponse du compartiment aérien de la végétation. A l’issue de cette étude, il nous apparaît qu’une approche plus intégrative du fonctionnement de l’écosystème est nécessaire pour accroître notre capacité de prédiction de l’impact des pratiques sur le stockage du C en prairie.The fast increase of greenhouse gases in the atmosphere, such as carbon dioxide, due to human activities is consider as the main cause of actual climate change. Terrestrial ecosystem are considered as a huge "sink" of C and may contribute to decrease greenhouse gases. Permanent grasslands cover 40% of land and their soil may contribute to sequester C (GIEC 2001). However, the processes involved and their regulations remain to be specified. The aim of the thesis was to analyze the effect of grazing management on soil C storage. This analysis was made from data acquired on two long term permanent grassland sites (SOERE ACBB) and by studying C fluxes between the different agroecosystem compartments under different grazing intensities for i) estimating our capacity to measure soil C storage after 10 years of grazing treatments by comparing two methods (soil inventories vs net carbon storage measurements), ii) to provide knowledge on the mechanisms and regulations affecting the dynamics of soil C sequestration. Comparing results of both methods, measurements indicated a net C sequestration in soil, with an average sequestration rate of 2.21 t C ha-1 yr-1 and 2.29 t C ha-1 year-1 and no significant difference between treatment but a tendency to a higher sequestration with more intensive management. Each method provides access to different information. The approach with flux towers allows a better understanding of the role and interactions between climate and practices on C fluxes in grasslands. Soil inventories showed carbon is store in deeper soil layers. While plant communities have evolved as a result of differentiated grazing treatments, measurements show no changes in total C stocks and particulate organic matter. Analysis of C fluxes after 7 years of differentiate grazing treatments, showed that treatments with low or zero grazing intensity led to a reduction of carbon fluxes between the compartments of the continuum of degradation, while carbon stocks in roots and POM were not affected by treatments. A complementary study conducted to estimate root production indicates that the response of roots (stocks and production) and stocks of particulate organic matter may be partly decoupled from the response of the aerial vegetation compartment. This study indicates that a more integrative approach on ecosystem functioning is necessary to increase our ability to predict the impact of management practices on C storage in grassland

    C sequestration of a grazed permanent grasslands : uses of complementary methods for data analyses and interpretation

    No full text
    Temperate grasslands have been recognized for their great potential to sequester an important amount of carbon, contributing to slow down the current rise in "greenhouse" gases and associated effect. However, the quantification of this C sink activity has been greatly questioned, due to the uncertainty associated to those values being as important as the sink itself.So far, soil inventories are the most direct approach to investigate C sequestration via changes SOC, while an alternative to the direct measurement of C stock changes in grasslands is to measure the net balance of C fluxes exchanged at the system boundaries. This approach provides a high temporal resolution and changes in C stock can be detected within one year. Here we measured net C sequestration over 12 years using both methods (i.e. three soil inventories and eddy covariance technique) on two upland semi-natural pasture grazed by heifers at two contrasted stocking rate (high vs low) . Moreover, to assess the becoming of sequestrated C, soils were analysed in details i)for their soil organic matter pools ( i.e. labile, passive, inert; Zimmermann et al method) and ii) spatial distribution of soil C stock changes at field scale over time

    Determination of the maximum bioaccumulation capacity of various metals in leaves of two Tillandsia species

    No full text
    International audienceTillandsia species are plants from the Bromeliaceae family which display biomonitoring capacities in both active and passive modes. The bioaccumulation potential of Tillandsia aeranthos (Loisiel.) Desf. and Tillandsia bergeri Mez acclimated to Southern/Mediterranean Europe has never been studied. More generally, few studies have detailed the maximum accumulation potential of Tillandsia leaves through controlled experiments. The aim of this study is to evaluate the maximum accumulation values of seven metals (Co, Cu, Mn, Ni, Pb, Pt, and Zn) in T. aeranthos and T. bergeri leaves. Plants were immersed in different mono elemental metallic solutions of Co (II), Cu (II), Mn (II), Ni (II), Pb (II), Pt (IV), and Zn (II) ions at different concentrations. In addition, cocktail solutions of these seven metals at different concentrations were prepared to study the main differences and the potential selectivity between metals. After exposure, the content of these metals in the leaves were measured by inductively coupled plasma-optical emission spectrometry. Data sets were evaluated by a fitted regression hyperbola model and principal component analysis, maximum metal loading capacity, and thermodynamic affinity constant were determined. The results showed important differences between the two species, with T. bergeri demonstrating higher capacity and affinity for metals than T. aeranthos. Furthermore, between the seven metals, Pb and Ni showed higher enrichment factors (EF). T. bergeri might be a better bioaccumulator than T. aeranthos with marked selectivity for Pb and Ni, metals of concern in air quality biomonitoring

    Dynamics of root growth in response to grazing intensity and climate variability of a permanent upland mesic grassland

    No full text
    National audiencePermanent grassland provides ecosystem services such as protection of soil quality, preservation of ground and surface water quality and regulation of climate through soil carbon sequestration. Intensification of management practices through changes of mowing, fertilization and grazing intensity may threaten these services as well as climate variability through increasing drought intensity and frequency. In grassland, root activity (growth, mortality) contributes to the main inputs of C and N compounds into the soil. Understanding how root activity and soil C stock respond to management is of prime importance for the ecosystem C sequestration service. We studied during two years the dynamics of root mass production of an upland grassland subjected to different grazing intensity (abandonment, low and high stocking density with respectively 0, 6.9 and 13.8 LSU ha-1, livestock unit) and to ambient climate variability. We expected to have lower below-ground net primary production in intensive than in extensive grazing treatments due to stimulation of shoot mass at the expense of roots. The site is part of the long-term observatory network (ACBB-SOERE) located at St-Genès-Champanelle, France and included 12 plots, in which four ingrowth cores were inserted at 20 cm and collected 10 times each year during two following years. In addition root mass was measured three times during the first year to calculate root turnover. We showed strong seasonal root production in spring and autumn for all treatments either during a wet (first) or a dry (second) year. Root production started earlier in spring for both grazing treatments than in abandonment, which can be explained by higher soil temperature. However at the annual scale, root production and root stock were similar between treatments, leading to unchanged root turnover. Thus grazing intensity did not lead to change of root stock, although root dynamics, above-ground biomass and species composition were affected

    Cytotoxicity and Identification of Antibacterial Compounds from Baillonella toxisperma Bark Using a LC-MS/MS and Molecular Networking Approach

    No full text
    International audienceBaillonella toxisperma is a medicinal plant used in northern Gabon to treat microbial diseases. It is a plant well-known by local populations, but very few studies have focused on the molecules responsible for the antibacterial activities of B. toxisperma. This study proposes a dereplication strategy based on molecular networking generated from HPLC-ESI-Q/TOF data, allowing investigation of the molecules responsible for the antibacterial activity of B. toxisperma. From this strategy, eighteen compounds were putatively identified. All of these compounds belonged mainly to five families of natural compounds, including phenylpropanolamines, stilbenes, flavonoids, lignans and phenolic glycosides. The chemical study carried out from the bark of B. toxisperma allowed us to identify, for the first time, compounds such as resveratrol and derivatives, epicatechin, epigallocatechin and epigallocatechin gallate. In addition, antibacterial activity (diffusion method and microdilution) and cytotoxicity (Cell Counting Kit-8 (CCK-8 Assay)) in vitro were evaluated. The crude ethanolic extract, as well as the fractions of B. toxisperma, showed significant antibacterial activity. However, the ethanolic fractions F2 and F4 presented high antibacterial activity compared to the crude extract. Cytotoxicity studies on colon-cancer cells (Caco-2) and human keratinocyte cells (HaCaT) showed moderate cytotoxicity in both cell types. This study clearly shows the therapeutic potential of the ethanolic extract of the bark of B. toxisperma and provides information on the phytochemical composition and bioactive compounds of the plant

    Seasonal Variation in Cell Wall Composition and Carbohydrate Metabolism in the Seagrass Posidonia oceanica Growing at Different Depths

    No full text
    International audiencePosidonia oceanica is a common seagrass in the Mediterranean Sea that is able to sequester large amounts of carbon. The carbon assimilated during photosynthesis can be partitioned into non-structural sugars and cell-wall polymers. In this study, we investigated the distribution of carbon in starch, soluble carbohydrates and cell-wall polymers in leaves and rhizomes of P. oceanica. Analyses were performed during summer and winter in meadows located south of the Frioul archipelago near Marseille, France. The leaves and rhizomes were isolated from plants collected in shallow (2 m) and deep water (26 m). Our results showed that P. oceanica stores more carbon as starch, sucrose and cellulose in summer and that this is more pronounced in rhizomes from deep-water plants. In winter, the reduction in photoassimilates was correlated with a lower cellulose content, compensated with a greater lignin content, except in rhizomes from deep-water plants. The syringyl-to-guaiacyl (S/G) ratio in the lignin was higher in leaves than in rhizomes and decreased in rhizomes in winter, indicating a change in the distribution or structure of the lignin. These combined data show that deep-water plants store more carbon during summer, while in winter the shallow- and deep-water plants displayed a different cell wall composition reflecting their environment
    corecore