965 research outputs found

    The role of extracellular vesicles in cutaneous remodeling and hair follicle dynamics

    Get PDF
    Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are cell-derived membranous structures that were originally catalogued as a way of releasing cellular waste products. Since the discovery of their function in intercellular communication as carriers of proteins, lipids, and DNA and RNA molecules, numerous therapeutic approaches have focused on the use of EVs, in part because of their minimized risk compared to cell-based therapies. The skin is the organ with the largest surface in the body. Besides the importance of its body barrier function, much attention has been paid to the skin in regenerative medicine because of its cosmetic aspect, which is closely related to disorders affecting pigmentation and the presence or absence of hair follicles. The use of exosomes in therapeutic approaches for cutaneous wound healing has been reported and is briefly reviewed here. However, less attention has been paid to emerging interest in the potential capacity of EVs as modulators of hair follicle dynamics. Hair follicles are skin appendices that mainly comprise an epidermal and a mesenchymal component, with the former including a major reservoir of epithelial stem cells but also melanocytes and other cell types. Hair follicles continuously cycle, undergoing consecutive phases of resting, growing, and regression. Many biomolecules carried by EVs have been involved in the control of the hair follicle cycle and stem cell function. Thus, investigating the role of either naturally produced or therapeutically delivered EVs as signaling vehicles potentially involved in skin homeostasis and hair cycling may be an important step in the attempt to design future strategies towards the efficient treatment of several skin disordersThis research was funded by the Fondo de Investigación Sanitaria, Instituto de Salud Carlos III (CP 14/00219), Fondo Europeo de Desarrollo Regional (FEDER), H2020-EU.1.1.—European Research Council (ERC-2016-StG 715322-EndoMitTalk), and Instituto de Salud Carlos III (FIS16/188). E.C. was supported by the Atracción de Talento Investigador grant 2017-T2/BMD-5766 (Comunidad de Madrid and Universidad Autónoma de Madrid). G.S.-H. was funded by an FPI grant (Universidad Autónoma de Madrid). M.M. was supported by the Miguel Servet program (Instituto de Investigación del Hospital 12 de Octubre

    A discrete linearizability test based on multiscale analysis

    Get PDF
    In this paper we consider the classification of dispersive linearizable partial difference equations defined on a quad-graph by the multiple scale reduction around their harmonic solution. We show that the A_1, A_2 and A_3 linearizability conditions restrain the number of the parameters which enter into the equation. A subclass of the equations which pass the A_3 C-integrability conditions can be linearized by a Mobius transformation

    A discrete integrability test based on multiscale analysis

    Full text link
    In this article we present the results obtained applying the multiple scale expansion up to the order \epsilon^6 to a dispersive multilinear class of equations on a square lattice depending on 13 parameters. We show that the integrability conditions given by the multiple scale expansion give rise to 4 nonlinear equations, 3 of which are new, depending at most on 2 parameters and containing integrable sub cases. Moreover at least one sub case provides an example of a new integrable system

    Nonlinear gyrotropic vortex dynamics in ferromagnetic dots

    Get PDF
    The quasistationary and transient (nanosecond) regimes of nonlinear vortex dynamics in a soft magnetic dot driven by an oscillating external field are studied. We derive a nonlinear dynamical system of equations for the vortex core position and phase, assuming that the main source of nonlinearity comes from the magnetostatic energy. In the stationary regime, we demonstrate the occurrence of a fold-over bifurcation and calculate analytically the resonant nonlinear vortex frequencies as a function of the amplitude and frequency of the applied driving field. In the transient regime, we show that the vortex core dynamics are described by an oscillating trajectory radius. The resulting dynamics contain multiple frequencies with amplitude decaying in time. Finally, we evaluate the ranges of the system parameters leading to a vortex core instability (core polarization reversal)
    corecore