654 research outputs found

    Mathematical modelling of curtain coating

    Get PDF
    We present a simple mathematical model for the fluid flow in the curtain coating process, exploiting the small aspect ratio, and examine the model in the large-Reynolds-number limit of industrial interest. We show that the fluid is in free fall except for a region close to the substrate, but find that the model can not describe the turning of the curtain onto the substrate. We find that the inclusion of a viscous bending moment close to the substrate allows the curtain to “turn the corner”

    Generalized Qualification and Qualification Levels for Spectral Regularization Methods

    Get PDF
    The concept of qualification for spectral regularization methods for inverse ill-posed problems is strongly associated to the optimal order of convergence of the regularization error. In this article, the definition of qualification is extended and three different levels are introduced: weak, strong and optimal. It is shown that the weak qualification extends the definition introduced by Mathe and Pereverzev in 2003, mainly in the sense that the functions associated to orders of convergence and source sets need not be the same. It is shown that certain methods possessing infinite classical qualification, e.g. truncated singular value decomposition (TSVD), Landweber's method and Showalter's method, also have generalized qualification leading to an optimal order of convergence of the regularization error. Sufficient conditions for a SRM to have weak qualification are provided and necessary and sufficient conditions for a given order of convergence to be strong or optimal qualification are found. Examples of all three qualification levels are provided and the relationships between them as well as with the classical concept of qualification and the qualification introduced by Mathe and Perevezev are shown. In particular, spectral regularization methods having extended qualification in each one of the three levels and having zero or infinite classical qualification are presented. Finally several implications of this theory in the context of orders of convergence, converse results and maximal source sets for inverse ill-posed problems, are shown.Comment: 20 pages, 1 figur

    Optimisation of patch distribution strategies for AMR applications

    Get PDF
    As core counts increase in the world's most powerful supercomputers, applications are becoming limited not only by computational power, but also by data availability. In the race to exascale, efficient and effective communication policies are key to achieving optimal application performance. Applications using adaptive mesh refinement (AMR) trade off communication for computational load balancing, to enable the focused computation of specific areas of interest. This class of application is particularly susceptible to the communication performance of the underlying architectures, and are inherently difficult to scale efficiently. In this paper we present a study of the effect of patch distribution strategies on the scalability of an AMR code. We demonstrate the significance of patch placement on communication overheads, and by balancing the computation and communication costs of patches, we develop a scheme to optimise performance of a specific, industry-strength, benchmark application

    Performance optimisation of inertial confinement fusion codes using mini-applications

    Get PDF
    Despite the recent successes of nuclear energy researchers, the scientific community still remains some distance from being able to create controlled, self-sustaining fusion reactions. Inertial Confinement Fusion (ICF) techniques represent one possible option to surpass this barrier, with scientific simulation playing a leading role in guiding and supporting their development. The simulation of such techniques allows for safe and efficient investigation of laser design and pulse shaping, as well as providing insight into the reaction as a whole. The research presented here focuses on the simulation code EPOCH, a fully relativistic particle-in-cell plasma physics code concerned with faithfully recreating laser-plasma interactions at scale. A significant challenge in developing large codes like EPOCH is maintaining effective scientific delivery on successive generations of high-performance computing architecture. To support this process, we adopt the use of mini-applications -- small code proxies that encapsulate important computational properties of their larger parent counterparts. Through the development of a mini-application for EPOCH (called miniEPOCH), we investigate a variety of the performance features exhibited in EPOCH, expose opportunities for optimisation and increased scientific capability, and offer our conclusions to guide future changes to similar ICF codes

    Mini-app driven optimisation of inertial confinement fusion codes

    Get PDF
    In September 2013, the large laser-based inertial confinement fusion device housed in the National Ignition Facility at Lawrence Livermore National Laboratory, was widely acclaimed to have achieved a milestone in controlled fusion – successfully initiating a reaction that resulted in the release of more energy than the fuel absorbed. Despite this success, we remain some distance from being able to create controlled, self-sustaining fusion reactions. Inertial Confinement Fusion (ICF) represents one leading design for the generation of energy by nuclear fusion. Since the 1950s, ICF has been supported by computing simulations, providing the mathematical foundations for pulse shaping, lasers, and material shells needed to ensure effective and efficient implosion. The research presented here focuses on one such simulation code, EPOCH, a fully relativistic particle-in-cell plasma physics code, developed by a leading network of over 30 UK researchers. A significant challenge in developing large codes like EPOCH is maintaining effective scientific delivery on successive generations of high-performance computing architecture. To support this process, we adopt the use of mini-applications – small code proxies that encapsulate important computational properties of their larger parent counterparts. Through the development of a miniapp for EPOCH (called miniEPOCH), we investigate known timestep scaling issues within EPOCH and explore possible optimisations: (i) Employing loop fission to increase levels of vectorisation; (ii) Enforcing particle ordering to allow the exploitation of domain specific knowledge and, (iii) Changing underlying data storage to improve memory locality. When applied to EPOCH, these improvements represent a 2.02× speed-up in the core algorithm and a 1.55× speed-up to the overall application runtime, when executed on EPCC’s Cray XC30 ARCHER platform

    Criteria for developing, assessing and selecting candidate EQ-5D bolt-ons.

    Full text link
    PURPOSE: 'Bolt-on' dimensions are additional items added to multi-attribute utility instruments (MAUIs) such as EQ-5D that measure constructs not included in the core descriptive system. The use of bolt-ons has been proposed to improve the content validity and responsiveness of the descriptive system in certain settings and health conditions. EQ-5D bolt-ons serve a particular purpose and thus satisfy a certain set of criteria. The aim of this paper is to propose a set of criteria to guide the development, assessment and selection of candidate bolt-on descriptors. METHODS: Criteria were developed using an iterative approach. First, existing criteria were identified from the literature including those used to guide the development of MAUIs, the COSMIN checklist and reviews of existing bolt-ons. Second, processes used to develop bolt-ons based on qualitative and quantitative approaches were considered. The information from these two stages was formalised into draft development and selection criteria. These were reviewed by the project team and iteratively refined. RESULTS: Overall, 23 criteria for the development, assessment and selection of candidate bolt-ons were formulated. Development criteria focused on issues relating to i) structure, ii) language, and iii) consistency with the existing EQ-5D dimension structure. Assessment and selection criteria focused on face and content validity and classical psychometric indicators. CONCLUSION: The criteria generated can be used to guide the development of bolt-ons across different health areas. They can also be used to assess existing bolt-ons, and inform their inclusion in studies and patient groups where the EQ-5D may lack content validity

    PHM19 USING THE EQ-5DTO MONITOR HEALTH-RELATED QUALITY OF LIFE OVERTIME IN THE CATALAN HEALTH INTERVIEW SURVEY

    Get PDF
    • …
    corecore