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Abstract—In September 2013, the large laser-based inertial
confinement fusion device housed in the National Ignition Fa-
cility at Lawrence Livermore National Laboratory, was widely
acclaimed to have achieved a milestone in controlled fusion —
successfully initiating a reaction that resulted in the release of
more energy than the fuel absorbed. Despite this success, we
remain some distance from being able to create controlled, self-
sustaining fusion reactions. Inertial Confinement Fusion (ICF)
represents one leading design for the generation of energy by
nuclear fusion. Since the 1950s, ICF has been supported by
computing simulations, providing the mathematical foundations
for pulse shaping, lasers, and material shells needed to ensure
effective and efficient implosion.

The research presented here focuses on one such simulation
code, EPOCH, a fully relativistic particle-in-cell plasma physics
code, developed by a leading network of over 30 UK researchers.
A significant challenge in developing large codes like EPOCH is
maintaining effective scientific delivery on successive generations
of high-performance computing architecture. To support this
process, we adopt the use of mini-applications — small code proxies
that encapsulate important computational properties of their
larger parent counterparts. Through the development of a mini-
app for EPOCH (called miniEPOCH), we investigate known time-
step scaling issues within EPOCH and explore possible optimisa-
tions: (i) Employing loop fission to increase levels of vectorisation;
(ii) Enforcing particle ordering to allow the exploitation of domain
specific knowledge and, (iii) Changing underlying data storage
to improve memory locality. When applied to EPOCH, these
improvements represent a 2.02x speed-up in the core algorithm
and a 1.55x speed-up to the overall application runtime, when
executed on EPCC’s Cray XC30 ARCHER platform.

I. INTRODUCTION

The UK has a long history of research into high-intensity
laser plasma interactions. The UK’s Central Laser Facility is
home to some of the world’s most advanced high power lasers,
which can deliver Petawatt focused beams, with approximately
10,000 times more power than the UK National Grid, dur-
ing picosecond pulses. Developments in the deployment of

relativistically intense ‘long’ laser pulses (to compress fuel)
and fast ‘short’ pulses (for ignition) present significant chal-
lenges in computational plasma physics. Plasmas with intense
electromagnetic fields require fully kinetic models of particle
distribution in 7 dimensions (3 space, 3 momentum and time);
and point design for targets requires the coupling of relativistic
kinetic models with long time-scale radiation hydrodynamics
codes. As future gyrokinetic codes continue to develop to
support plasma turbulence studies, in order to exploit facilities
such as ITER, for example, the complexity of these simulations
and the demands on the supporting supercomputers will also
increase.

Particle-in-cell (PIC) codes are amongst the most widely
used computational tools in plasma physics research, and help
develop further understanding of both inertial confinement
fusion (ICF) and laser-plasma interactions in general. The
research presented here focuses on the Extensible PIC Open
Collaboration simulation codebase, named EPOCH [1], which
is a nationally funded, fully relativistic EM particle-in-cell
plasma physics code, developed by a leading network of over
30 UK researchers.

A significant challenge in developing large codes like
EPOCH is maintaining effective scientific delivery on succes-
sive generations of high-performance computing architectures.
In EPOCH, collections of physical particles are represented
using a smaller number of pseudoparticles; the fields generated
by the motion of these pseudoparticles are calculated using
a finite difference time domain on an underlying grid of
fixed spatial resolution. The forces on the pseudoparticles
due to the calculated fields are used to update the velocities
of the pseudoparticles, and these velocities are then used to
update their positions. Using this approach it is possible to
reproduce the full range of classical micro-scale behaviour of
a collection of charged particles. Like many codes of this type,
EPOCH is Fortran-based and MPI parallelised; dynamic load
balancing options exist and MPI-IO allows checkpoint re-start



on an arbitrary number of processors. Legacy simulation codes
designed and implemented in this way are now exhibiting
poor utilisation of modern hardware features such as vector
operations, and fail to fully exploit all levels of available
parallelism — a problem which is exacerbated by the energy-
efficient benefits available through heterogeneous computing.

The continued development, maintenance and future-
proofing of EPOCH represents a significant software
engineering challenge, EPOCH represents decades of
development by skilled domain experts — the code is feature
rich, but equally large and complex. Code porting to explore
the potential benefits of new compute architectures represents
a significant undertaking, and the resulting benefits of
this effort may indeed be small. To help mitigate these
problems, we adopt the use of mini-applications (commonly
termed mini-apps) — small code proxies that encapsulate
important computational properties of their larger parent
counterparts [2, 3]. The existence of mini-apps is built on the
premise that (i) although simulation codes may have millions
of lines of source code, their performance is often dominated
by a small subset of the code and, (ii) simulation codes
may contain many physics models that are mathematically
distinct, but in many cases exhibit similar performance
characteristics. Mini-apps operate by encapsulating the most
important computational operations and consolidating physics
capabilities that have the same performance profiles; they will
typically be orders of magnitude smaller than their parent
code, and as a result be easier to port, easier to improve,
easier to extend, and less likely to be subject to restrictive
licensing governing their use or distribution.

This paper makes a number of contributions:

e We present the development of a new mini-app
(miniEPOCH) for the parent code EPOCH. To our
knowledge this is the first publicly recorded mini-app
explicitly targeting a finite difference time domain
particle-in-cell (PIC) plasma physics code;

o We utilise miniEPOCH to explore known performance
problems within EPOCH, and in particular (i) the
increasing time-step duration during simulation runtime
and, (ii) high levels of cache miss rates due to particle-
store fragmentation;

e Using miniEPOCH we explore opportunities for
code optimisation, including the utilisation of shared
memory, exploiting increasing vector width and
improving memory locality;

e Finally, we validate these EPOCH optimisations on
ARCHER, a 1.6 PFlop/s Cray XC30, housed at the
UK national supercomputing centre at EPCC. These
improvements demonstrate a 2.02x speed-up in the
core EPOCH algorithm and a 1.55x speed-up to the
overall application runtime.

for all species do
for all particles do

> Move particles.
position <— position + momentum

> Update momentum based on field effects.
e_cell « |position |
for all neighbours of e_cell do
calculate electric field effects
end for

b_cell + |position + 0.5 |

for all neighbours of b_cell do
calculate magnetic field effects

end for

momentum <— momentum + electric and magnetic field effects

> Calculate and deposit currents.
for all neighbour cells do
calculate current
deposit current
end for

end for
end for

Fig. 1.
algorithm.

Pseudocode depiction of EPOCH’s core particle-in-cell (PIC)

The remainder of this paper is organised as follows: Sec-
tion II provides additional background on EPOCH and its core
algorithms; Section III documents an analysis of related work;
Section IV details performance and algorithmic characteristics
of EPOCH and the resulting mini-app implementation; Sec-
tion V presents a detailed study of code optimisation using
the mini-app, and the translation of these optimisations to the
parent code; Section VI concludes the paper.

II. THE EXTENSIBLE PIC OPEN COLLABORATION
SIMULATION CODEBASE (EPOCH)

EPOCH is a nationally funded, fully relativistic EM particle-
in-cell plasma physics code, developed by a leading network
of over 30 UK researchers. At the core of this simulation code-
base are particle push and field update algorithms, developed
by Hartmut Ruhl [4], extended to include advanced features
such as collisions, ionisation and quantum electrodynamics-
(QED) driven coherent radiation. EPOCH tracks the electric
and magnetic fields generated by the motion of pseudoparti-
cles, and is capable of reproducing the full range of classical
microscale behaviour required to accurately simulate a collec-
tion of charged particles. Fig. 1 depicts the core PIC algorithm
used in EPOCH, which typically accounts for over 80% of the
application runtime, and consists of the following three steps:

1) Move the particle across the physical domain, propor-
tional to particle momenta;

2) Update the particle’s momentum, based upon the local
electric fields, magnetic fields, and particle shape;

3) Deposit the generated current onto the grid, to act as
an intermediary for particle-particle interactions.
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Fig. 2. A so-called Yee Grid, applying centered finite difference operators
on staggered grids in space and time for each electric and magnetic vector
field component.

These steps represent a considerable computational work-
load and are currently expressed as a single code kernel in
which the particle loop spans approximately 500 lines of
source code.

To distribute work between processing elements, EPOCH
uses a static n-dimensional MPI domain decomposition, as-
signing a rectangular region of the physical domain to each
processing element. Each MPI task is then responsible for a
distinct region of the domain, transferring control of particles
as they leave the space, and accepting any particles which
may enter. This method of decomposition is known to exhibit
poor performance for problems which display strong load
imbalance, so in the interests of presenting a fair study, we
limit this investigation to problems that remain well balanced
throughout their operation [5].

In EPOCH, particles are densely packed, with a single
particle spanning multiple grid cells (typically 3 x3). EPOCH
employs a Finite-Difference Time-Domain method (FDTD),
and represents electrical and magnetic fields on a staggered
Yee grid [6], as shown in Fig. 2. During the momentum update
(step 2), a 25-point stencil in each of 3 dimensions is read
per field, and used to update the particle momenta; the scale
of these memory operations are a significant contributor to
the overall application runtime. Once the current contributions
have been calculated (step 3), they are then stored into a
global array at indices determined by the grid vertices touched
during particle movement. This write to multiple indices of a
global array limits the possibility of particles simultaneously
depositing current without the need for atomics or other
concurrency control. It is this current deposition that most
strongly differentiates PIC from alternative methods; unlike
molecular dynamics, for example, PIC features no particle-
particle interactions, instead approximating these using the Yee
grid as an intermediary.

A known performance issue observed during the operation
of EPOCH is that the duration of each time step increases
as the simulation progresses. This problem is demonstrated
in Fig. 3, where we see a sharp increase in time-step duration
until approximately 4,000 steps, after which time-step duration
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Fig. 3. The duration of each time step in EPOCH as a simulation progresses.
Each simulation window, of which there are 100 in total, contains 100 steps.

stabilises. This observation is counter-intuitive, as there is no
change to the kernel during runtime. This issue has persisted
through many generations of EPOCH; in Section V we build
on our knowledge and understanding gained in previous re-
search [7] to address this time-step scaling problem, as well
as using the new EPOCH mini-app to explore further code
optimisation opportunities.

III. RELATED WORK

Despite the benefits of mini-apps being identified as early as
1991 [2], the re-emergence and use of mini-apps has only
gained greater traction in recent years [3]. There are now
examples of mini-app use in co-design, code optimisation and
porting, and in the exploration of new programming languages
and paradigms. We highlight some of the more relevant work
to this research.

The use of mini-apps for code optimisation is exemplified in
the work by Karlin et al. [8, 9], in which the authors use the
mini-app LULESH (Livermore Unstructured Lagrangian Ex-
plicit Shock Hydrodynamics) to demonstrate the optimisation
of multi-material hydrodynamics simulations, increasing both
the performance of their mini-app (which solves a Sedov blast
problem) and associated parent codes, such as Lawrence Liv-
ermore National Laboratory’s (LLNL) arbitrary Lagrangian-
Eulerian multi-physics code ALE3D. By using their mini-
app to better focus optimisation efforts, they managed to
increase LULESH’s vector instruction utilisation by a factor
of 8, reduce the number of memory reads by 62%, and
reduce the overall application memory footprint by 19%. These
improvements were then mapped back to ALE3D to achieve
a 20% reduction in overall application runtime [10, 11, 12],
performance gains that had remained undetected until the mini-
app investigation.

Further studies demonstrate the use of mini-apps to
rapidly investigate both hardware platforms and programming
paradigms. Lavallée et al. [13] demonstrate how they were
able to use the mini-app called HYDRO, developed by CEA
Saclay, to investigate multiple hardware platforms available
through the PRACE Tier-0 Research Infrastructure; similarly,
the size of the mini-app greatly aided their development of



several code variants of HYDRO, including those employing
MPI, OpenMP, CUDA, OpenCL, HMPP and UPC - a task
that would have been infeasible using the full production
application. The availability of such a diverse range of code
implementations allowed the authors to evaluate a variety of
heterogeneous hardware and assess its viability as a future
platform for the parent application RAMSES [14], an EU-
funded computational astrophysics package used for the study
of large-scale structure and galaxy formation. Such studies
demonstrate the importance of mini-apps as a tool to enable
studies in code portability, scaling, and performance.

While particle-in-cell codes are well understood [15, 16,
17, 18], the application of the mini-app software engineering
methodology to the field of plasma physics and PIC remains
largely unexplored. Previous work has been undertaken with
the aim of providing flexible, concise environments for the
development of PIC codes [19, 20]. GTC [21], at only 8,000
lines of code, is one such example of this; however, GTC is
not associated with any parent code per se, and any findings
associated with this code must still be translated to larger
production codes in this code class through additional research.
To the best of our knowledge, the research presented here is the
first to develop and apply a PIC mini-app, which is associated
with a large, production-code equivalent.

Mini-apps are increasingly being developed within open
source frameworks, thus allowing the HPC community to
benefit from their development. Projects such as Mantevo
[3, 22] and the UK Mini-App Consortium (UKMAC) [23]
exist to provide centralised repositories where collections of
mini-applications can exist, selected to represent key scientific
areas supported by high-performance computing simulation.

Finally, as point of clarification, the work presented here
focuses on fully relativistic PIC codes, where Maxwell’s
equations are solved using FDTD methods; this is not the same
as those solutions which utilise gyrokinetic equations, or those
that employ Fourier transforms to operate in the time domain.

IV. IMPLEMENTATION AND OPTIMISATION

The original version of EPOCH uses a linked list to store
its particles. While this itself does not present a problem,
naive implementations of linked lists offer no guarantees of
contiguous memory access. This means that as data elements
are inserted and deleted, memory allocations take place without
consideration for locality of existing data, and considerable
memory fragmentation can occur. This fragmentation can
significantly impact performance, as modern hardware is opti-
mised for contiguous memory loads, with each issued memory
load fetching an entire cache line. By aligning data and
promoting the grouping of data within cache lines, memory
locality can be improved and one can reduce the effective
bandwidth required to load the same amount of data from
main memory. This effect can be seen when particles move
across physical processor boundaries; as particles exit they are
deleted and new particles added at arbitrary memory addresses.
This means that although the initial particle allocation may be
contiguous, the memory access pattern degrades over time, as
a function of particle movement.

for all species do

for all particles do

> Move particles.

position <— position + momentum
end for

> Optional Particle Sort.
for all particles do
> Update momentum based on field effects.
e_cell + |position |
for all neighbours of e_cell do
calculate electric field effects
end for

b_cell + |position + 0.5 |

for all neighbours of b_cell do
calculate magnetic field effects

end for

momentum <— momentum + electric and magnetic field effects
end for

for all particles do
> Calculate and deposit currents.
for all neighbour cells do
calculate current
deposit current
end for
end for

end for

Fig. 4.
algorithm.

Pseudocode depiction of EPOCH’s modified particle-in-cell (PIC)

A second candidate for improving memory locality and,
as a result, effective memory bandwidth, is to group data in
memory such that it will cause subsequent loads to common
addresses. In so doing, memory is more likely to be resident
in cache when it is required and will reduce cache eviction
and thrashing. To achieve this in miniEPOCH, we implement
a particle sort to group spatially local particles in memory.
We then exploit domain specific knowledge to further improve
this. During the second step of the algorithm, the momentum
of particles is updated based on the surrounding magnetic
and electric fields. Given the staggered nature of the Yee grid
(Fig. 2), it is possible to group particles which share a common
vertex, and in so doing promote reuse within the 3-dimensional
stencil update.

A further performance limiting factor in EPOCH, is its
inefficient use of vector instructions (SIMD). Typically, it is
desirable to vectorise over the most computationally intense
code regions in order to fully exploit SIMD. In EPOCH this
means vectorising over the particles loop. However, in the
current expression of the algorithm, such auto-vectorisation of
particles is not possible due to a classical update dependency
within the current deposition. This update dependency is key
to the PIC algorithm, so where the original code expresses
the kernel as a single large loop, we adapt this in favour of
expressing the code as three discrete steps. We explore this
in our mini-app using loop fission, with pseudocode for this
shown in Fig. 4. As well as promoting vectorisation, splitting
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the code in this way also allows us to sort particles directly
after they have been moved, giving us a stronger guarantee re-
garding particle reuse during the field-effect stencil. Hereafter
we will refer to these three components as the move-, stencil-
and current- kernels.

While the sort itself does increase the amount of compu-
tation required for the execution, this is mitigated by two
factors: 1) Much of the computation for the sort can be done
while the particle is in cache from the particle move; 2) For
particles that are grouped together, we can avoid recomputing
shared properties, which was not previously possible. Further
to this, it is also possible to employ the sort after the stencil
kernel, allowing us to place guarantees on the order in which
the current kernel updates global memory, which can in
turn be exploited to remove the classical update dependency
and achieve vectorisation. As auto-vectorisation of all three
kernels is possible, we can further increase vector efficiency by
performing scalar replacement on arrays where possible, and
employing SIMD lane indexing to ensure all SIMD temporary
arrays have coalesced data accesses.

A. Experimental Setup

Throughout this work we report numerical results for the
periodic interaction of two densely packed electron streams.
Each pseudoparticle is assumed to have an individual mass,
and wide spanning third order b-spline stencil. Particle probes
are disabled and, unless otherwise stated, a typical problem
size of 1282 grid-cells per core is used, with 32 particles per
species, per cell, on a fully packed node. The results detailed
in Section V were obtained from ARCHER, a 1.6 PFlop/s
Cray XC30 housed at the UK national computing centre at
EPCC. ARCHER features 4,920 dual socket Intel Xeon ES5-
2697v2 Ivy Bridge nodes, with 24 cores per node. Intel 15.0
was used, with the highest level of code optimisation enabled
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Fig. 6. Normalised cache misses during a simulation consisting of 100
simulation windows, each window containing 100 steps.

(-03), and with platform specific code generation (-xHost)
enabled. PAPI 5.3.2.1 was used to gather the results of selected
performance counters, including those used for recording cache
misses and vector instruction counts.

V. RESULTS

During the initial investigation of the increasing duration of
time-steps in an EPOCH execution, it was believed that the pri-
mary contributor to the poor time-step scaling was increasing
fragmentation of the linked list. As the particles move between
MPI ranks, it was expected that the particle store would
become more fragmented. As previously discussed, this was
due to new particles being added to the store as they entered
the domain, whilst others were removed as they leave. Fig. 5
shows the typical cache miss rates for an unsorted, linked-
list implementation of EPOCH, while Fig. 6 shows this data
expressed as relative differences. We can clearly see that as the
simulation progresses, the cache-miss-rate increase is strongly
correlated with overall runtime, and peaks at approximately
4,000 steps. After 4,000 steps, the cache miss rates increase
at a much reduced rate. While this data strongly suggests that
the increase in runtime is caused by the change in cache miss
rates, it provides no clue as to its origin.

To investigate this further, we used the mini-app to imple-
ment an alternative, array-based, particle store. This allows
for contiguous access to particles, avoiding any fragmentation.
This greatly improved the time-step scaling of the mini-app,
with Fig. 5 showing the representative changes in cache misses
for a version of EPOCH with these changes applied. It is clear
that this change in implementation only partially addresses the
problem, with cache hit rates still scaling poorly as time-steps
progress. The readers attention is however drawn to the marked
decrease in L3 cache misses, which explains the substantial
benefit to runtime scaling seen in Fig. 8 for the array version
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of EPOCH. Whilst it is clear from Fig. 8 that an array version
of EPOCH benefits the overall runtime, the cache miss figures
in Fig. 5 identify that a secondary problem still exists. Further
analysis of the cache miss rates directed our attention to the
large stencil required when applying electromagnetic effects
to the particle momenta. Increasing disorder in the particle list
may explain the poor cache and memory behaviour, it would
increase the probability of cache pressure, and the probability
of spilling during this stencil-gather. Our strategy here was to
periodically sort the particle store, and in so doing investigate
the effect particle disorder had on both cache misses and
runtime. Such a sort remedied the problem, and allowed for
near perfect time-step scaling with a maximum deviation of
0.03% over ten thousand time-steps.

Having arrived at a significantly improved array-based ver-
sion of miniEPOCH, efforts could then be focused on optimis-
ing EPOCH to ensure that it was better able to utilise current
and future hardware. At the outset of this study, EPOCH
was unable to exploit vector operations in its main kernel.
The reason for this was a classic update dependency when

AVX, and for the code operating without vectorisation.

accumulating currents, with multiple particles possibly having
to write to the same array location concurrently. Given the
large size of the initial kernel (approximately 500 lines of
code), loop fission could be used to great effect in order to
separate out much of the non-dependant computation which
was SIMD-parallel safe. The previously mentioned sort, com-
bined with iterating over particles on a per vertex basis, allows
us to hoist loop invariant calculations so that they could be
performed once per vertex. This offered a decrease in the
overall required computation, and allowed the compiler to
better predict memory access patterns into global memory.

Through code modifications first tested in the mini-app, we
were able to ascertain that the restructured fissioned kernel
was able to successfully exploit vector instructions. Fig. 9
shows the SIMD scaling of kernel runtime for 256-bit AVX (4
doubles), 128-bit AVX (2 doubles), and for the code operating
without vectorisation. We see reasonable SIMD scaling for
all kernels, except for move. This is because of its memory-
stream-like structure, and the lack of floating point operations
per second (FLOPS) to hide the memory accesses. The stencil
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and current kernels represent the majority of the time spent in
miniEPOCH, and demonstrate significantly improved perfor-
mance with SIMD width. Such improvements will yield further
gains if the current trend of increasing SIMD width continues.

We can further improve performance by considering alter-
nate memory layouts used for the array storage. Not only
does this change how data is accessed, it also determines the
number of concurrent memory streams the processor has to
track during pre-fetching. Typically, particles are stored in an
array of custom objects (or structs), a technique known as an
Array-of-Structs (AoS). By storing particles as an AoS, a single
memory stream is required, with each particle loaded bringing
with it all particle properties from main memory. This effect
holds regardless of the number of properties used in the given
kernel, and can represent a significant overhead for kernels
which require few fields. When processing multiple array
elements, as is typical in SIMD, loads must be gathered from
memory, and any writes scattered, incurring a performance
cost and increasing the latency of the memory operations.
Alternative approaches include a Struct-of-Arrays (SoA) and
a more complex hybrid, Array-of-Structs-of-Arrays (AoSoA)
(which aims to combine the benefits of both SoA and AoS).
A brief overview of these memory layouts is found in Fig. 7,
where in our experiments SIMD Width was typically 4, as we
were operating on doubles with 256-bit AVX.

For the SoA data layout, single particle properties for
multiple particles are stored together in an array. This means
that under SIMD operation, single properties from multiple
particles can be loaded in one contiguous and aligned load, at
the expense of tracking a different memory stream per property
required. This eliminates any potential for gather/scatters, and
is often favourable when only a few particle properties are
required. With AoSoA, groups of NV elements of each property
are stored together, in order, where NNV is typically a function of
vector length. This approach attempts to combine the benefits
of both SoA and AoS, but comes at the expense of vastly
increased complexity and an indexing overhead. In the current
kernel configuration, a particle has 6 properties and stores 1

Fig. 11. Normalised instruction counts per kernel for different SIMD widths
for the Struct-of-Arrays (SoA) memory layout.

intermediary value (all types are doubles). The move kernel
requires 5 such properties, the stencil kernel requires 6 and
the current kernel requires 4. To investigate enhanced SIMD
scaling, we ported the mini-app to each of the alternative
memory layouts — this provides an excellent example of
where mini-apps allow rapid code exploration, which might
not otherwise be possible on full production codes. Fig. 10
shows the vector scaling of the SoA implementation, which
compared to Fig. 9 shows that the performance is favourable
in the kernels requiring fewer particle field accesses, and
generally favourable overall. This result is largely due to the
more effective use of data loaded using SoA, as no bandwidth
is wasted. Fig. 11 shows the relative difference in instruction
counts for varying SIMD widths, as recorded by PAPI. For
good vector scaling one would expect to see the number of
instructions executed decrease as a function of SIMD width.
We see that both the move and current kernels scale as
expected, but that the stencil kernel is only able to partially
benefit from the increase in SIMD width.

Fig. 12 shows the overall performance as a result of each
memory layout. Again we observe that as fewer particle
properties are required, SoA performs better and, as more
particle properties are required, so AoS outperforms SoA.
Ao0So0A pays the cost of masked hardware instructions due to
the sparse particle grouping used, a cost which will be much
reduced in future hardware generations and has already been
much reduced on the Intel Xeon Phi product range. We see
that each kernel benefits differently from the change in array
layout, largely due to cache pressure and required memory
bandwidth.

As with all mini-app optimisation studies, our goal was to
map our improvements back to the parent code in order to
facilitate improved scientific investigation. Fig. 13 shows the
overall runtime for an optimised version of EPOCH, as well
as the a comparison against the original EPOCH code base
and an array-based implementation. The array versions shows
a small increase over the original implementation due to the
lack of memory fragmentation and increased memory locality.
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for a 10,000 step run. The additional sort cost is highlighted for clarity.

The optimised version of EPOCH represent a considerable
improvement in code performance. It includes all previously
discussed improvements, including spatial sort, increased vec-
torisation, loop-invariant code hoisting, array scalarisation, and
coalesced temporary SIMD arrays. These optimisations deliver
a notable improvement to production code runtimes, and suc-
cessfully demonstrate the value a mini-app based optimisation
investigation. These improvements, recorded on ARCHER, a
1.6 PFlop/s Cray XC30, demonstrate a 2.02x speed-up in the
core EPOCH algorithm and a 1.55x speed-up to the overall
application runtime.

VI. CONCLUSIONS AND FUTURE WORK

Despite recent successes at the large laser-based inertial
confinement fusion device at the National Ignition Facil-
ity at LLNL, we remain some distance from being able
to create controlled, self-sustaining fusion reactions. Inertial
confinement fusion (ICF) represents one leading design for
the generation of energy by nuclear fusion and computing
simulations supporting ICF continue on some of the world’s
most powerful supercomputers. The research presented here

focuses on EPOCH, a fully relativistic particle-in-cell plasma
physics code, developed by a leading network of over 30
UK researchers. A significant challenge in developing large
codes like EPOCH is maintaining effective scientific delivery
on successive generations of high-performance computing ar-
chitecture. To support this process, we adopt the use of mini-
applications — small code proxies that encapsulate important
computational properties of their larger parent counterparts.

Through the development of miniEPOCH, we investigate
known time-step scaling issues within EPOCH and explore
possible optimisations. In particular, this work:

e Presents the development of a new mini-app
(miniEPOCH) for the EPOCH code. We believe
that this is the first mini-app explicitly targeting a finite
difference time domain particle-in-cell (PIC) plasma
physics code;

o Utilises miniEPOCH to explore known performance
problems with EPOCH, and in particular (i) the
increasing time-step duration during simulation runtime
and, (ii) high levels of cache miss rates due to particle-
store fragmentation;

e Employs the mini-app to explore opportunities for
code optimisation, including the utilisation of shared
memory, exploiting increasing vector width and
improving memory locality;

e Validates these findings on ARCHER, a 1.6 PFlop/s
Cray XC30, housed at the UK national supercomputing
centre at EPCC. These improvements demonstrate
a 2.02x improvement to the core EPOCH algorithm
and a 1.55x speed-up to the overall application runtime.

In future work we hope to reduce the performance impact
of the additional particle sort; highlighted in Fig. 13. Whilst
the current implementation of the sort remains largely unop-
timised, a algorithmic change would likely yield significant
improvement. The current implementation performs a full
particle sort despite large portions of the data remaining
sorted. A sorting algorithm which exploits this feature could
greatly improve overall application performance. Additionally,
a trade off between sort-cost and the performance improvement
could be achieved, by tracking sorted data regions and sorting
periodically, rather than requiring a fully ordered sort every
timestep. Unfortunately such investigation fell outside of the
scope of this work and is thus reserved for future work

Finally, as part of this work an OpenMP port of EPOCH
has also been developed. The results of this port demonstrate
good on-node scaling, and future work will build on this code-
base to develop an Intel Xeon Phi code version. This version
of miniEPOCH would be able to utilise the increased SIMD
width offered by the Intel Xeon Phi, and could facilitate a
study assessing the viability of heterogeneous and accelerated
hardware platforms for PIC codes.
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