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Abstract The concept of qualification for spectral regularization methods (SRM) for
inverse ill-posed problems is strongly associated to the optimal order of convergence
of the regularization error (Engl et al. in Regularization of inverse problems. Math-
ematics and its applications, vol. 375, Kluwer Academic, Dordrecht, 1996; Mathé
in SIAM J. Numer. Anal. 42(3):968–973, 2004; Mathé and Pereverzev in Inverse
Probl. 19(3):789–803, 2003; Vainikko in USSR Comput. Math. Math. Phys. 22(3):
1–19, 1982). In this article, the definition of qualification is extended and three differ-
ent levels are introduced: weak, strong and optimal. It is shown that the weak qual-
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ification extends the definition introduced by Mathé and Pereverzev (Inverse Probl.
19(3):789–803, 2003), mainly in the sense that the functions associated with orders
of convergence and source sets need not be the same. It is shown that certain methods
possessing infinite classical qualification (e.g. truncated singular value decomposi-
tion (TSVD), Landweber’s method and Showalter’s method) also have generalized
qualification leading to an optimal order of convergence of the regularization error.
Sufficient conditions for a SRM to have weak qualification are provided and neces-
sary and sufficient conditions for a given order of convergence to be strong or optimal
qualification are found. Examples of all three qualification levels are provided and
the relationships between them as well as with the classical concept of qualification
and the qualification introduced in Mathé and Pereverzev (Inverse Probl. 19(3):789–
803, 2003) are shown. In particular, SRMs having extended qualification in each one
of the three levels and having zero or infinite classical qualification are presented.
Finally, several implications of this theory in the context of orders of convergence,
converse results and maximal source sets for inverse ill-posed problems, are shown.

Keywords Qualifications · Regularization methods · Inverse ill-posed problems

1 Introduction and Preliminaries

Let X,Y be infinite-dimensional Hilbert spaces and let T : X → Y be a bounded
linear operator. If R(T ), the range of T , is not closed, it is well known that the linear
operator equation

T x = y (1)

is ill-posed, in the sense that T †, the Moore-Penrose generalized inverse of T , is not
bounded [1]. The Moore-Penrose generalized inverse is strongly related to the least-
squares (LS) solutions of (1). In fact (1) has a LS solution if and only if y belongs
to D(T †), the domain of T †, which is defined as D(T †)

.= R(T ) ⊕ R(T )⊥. In that
case, x† .= T †y is the best approximate solution (i.e. the LS solution of minimum
norm) and the set of all LS solutions of (1) is given by x† + N (T ). If the problem is
ill-posed, then x† does not depend continuously on the data y. Hence if instead of the
exact data y, only an approximation yδ is available, with ‖y − yδ‖ ≤ δ, where δ > 0
is the noise level or observation error, then it is possible that T †yδ does not exist or, if
it exists, then it will not necessarily be a good approximation of x†, even if δ is very
small. This instability becomes evident when trying to approximate x† by standard
numerical methods and procedures. Thus, for instance, except under rather restrictive
conditions ([5, 6]), the application of the standard LS approximations procedure on a
sequence {Xn} of finite dimensional subspaces of X, whose union is dense in X, will
result in a sequence {xn} of LS approximating solutions which does not converge to
x† (see [7]). Moreover, this divergence can occur with arbitrarily large speed (see [8]).

Ill-posed problems must be regularized before pretending to successfully attack
the problem of numerically approximating their solutions. Regularizing an ill-posed
problem such as (1) essentially means approximating the operator T † by a parametric
family of continuous operators {Rα}, where α is called the regularization parameter.



J Optim Theory Appl (2009) 141: 547–567 549

More precisely, for α ∈ (0, α0) with α0 ∈ (0,+∞], let Rα : Y → X be a continuous
(not necessarily linear) operator. The set {Rα}α∈(0,α0) is said to be a “family of regu-
larization operators” (FRO) for T †, if for every y ∈ D(T †), there exists a parameter
choice rule α = α(δ, yδ) such that

lim
δ→0+ sup

yδ∈Y

‖yδ−y‖≤δ

∥
∥
∥Rα(δ,yδ)y

δ − T †y

∥
∥
∥ = 0.

Here the parameter choice rule α : R
+ × Y → (0, α0) is such that

lim
δ→0+ sup

yδ∈Y

‖yδ−y‖≤δ

α(δ, yδ) = 0.

If y ∈ D(T †), then x† satisfies the normal equation (T ∗T )x† = T ∗y and x† can
be written as

x† .= T †y =
∫ ‖T ‖2+

0

1

λ
dEλT

∗y, (2)

where {Eλ}λ∈R is the spectral family associated to the self-adjoint operator T ∗T
(see [1, 9]). However, since we are assuming that R(T ) is not closed (and therefore
D(T †) � Y ), if y /∈ D(T †) then the integral in (2) does not exist since in that case 0 ∈
σ(T ∗T ) and 1

λ
has a pole at 0. Moreover in this case, the operator T † defined in (2)

for y ∈ D(T †), is not bounded. For that reason, many regularization methods are

based on spectral theory and consist on defining Rα
.= ∫ ‖T ‖2+

0 gα(λ)dEλ T ∗ where
{gα} is a family of functions appropriately defined such that for every λ ∈ (0,‖T ‖2]
there holds limα→0+ gα(λ) = 1

λ
.

Let {gα}α∈(0,α0) be a parametric family of functions gα : [0,+∞) → R defined for
all α ∈ (0, α0). We shall say that {gα}α∈(0,α0) is a “spectral regularization method”
(SRM), if it satisfies the following hypotheses:

(H1) For every fixed α ∈ (0, α0), gα(λ) is piecewise continuous with respect to λ,
for λ ∈ [0,+∞);

(H2) There exists a constant C > 0 (independent of α) such that |λgα(λ)| ≤ C for
every λ ∈ [0,+∞);

(H3) For every λ ∈ (0,+∞), limα→0+ gα(λ) = 1
λ

.

It can be shown that, if {gα}α∈(0,α0) is a SRM, then the family of operators
{Rα}α∈(0,α0), defined by

Rα
.=

∫

gα(λ)dEλ T ∗ = gα(T ∗T )T ∗,

is a FRO for T † ([1], Theorem 4.1). In this case we shall say that {Rα}α∈(0,α0) is a
“spectral regularization family” for T †. The use of this terminology has to do with the
fact that each one of its elements is defined in terms of an integral with respect to the
spectral family {Eλ}λ∈R associated to the operator T ∗T . Note that given the operator
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T , it is sufficient that gα(λ) be defined for λ ∈ [0,‖T ‖2], since Eλ is “constant”
outside that interval.

It is well known that for ill-posed problems it is not possible to reconstruct the
exact solution x† with any degree of accuracy unless additional a-priori informa-
tion about x† is available ([1, Proposition 3.11, 8]). On the other hand, given certain
a-priori information about x†, it could be desirable to know the best order of con-
vergence (of the regularization error ‖Rαy − x†‖ as a function of the regularization
parameter α, or of the total error ‖Rαyδ − x†‖ as a function of the noise level δ),
that can be achieved with a regularization method under those a-priori assumptions.
Conversely, given an order of convergence, one could be interested in determining the
possible existence of “source sets” on which a certain regularization method reaches
that order of convergence. In this case it could further be of interest to determine
“maximal source sets”. All these problems are strongly related to the concepts of
qualification and saturation of a regularization method ([1–3, 10–12]).

In [4] the notion of qualification of a regularization method was introduced for the
first time and the decisive role of this concept in relation to the order of convergence
of the regularization error was shown. In the sequel, we shall simply denote with
{gα} the SRM {gα}α∈(0,α0). We now recall the definition of classical qualification for
SRMs (see [1]).

Definition 1.1 Let {gα} be a SRM and denote with I(gα) the set

I(gα)
.= {μ ≥ 0 : ∀λ ∈ [0,+∞),∃k > 0 such that

λμ |1 − λgα(λ)| ≤ k αμ ,∀α ∈ (0, α0)}
and let μ0

.= supμ∈I(gα) μ. If 0 < μ0 < +∞, we say that {gα} has classical qualifi-
cation and in that case the number μ0 is called “order” of the classical qualification.

Remark 1.1 Note that 0 ∈ I(gα) by virtue of H2 and therefore I(gα) is always non-
empty.

In [3], Mathé and Pereverzev first introduced the following definition of qualifi-
cation for a spectral regularization method, formalizing and extending the classical
notion of the concept.

Definition 1.2 Let ρ : (0, a] → (0,∞) be an increasing function. It is said that the
regularization method {gα} has qualification ρ if there exists a constant γ ∈ (0,∞)

such that

sup
λ∈(0,a]

|1 − λgα(λ)|ρ(λ) ≤ γ ρ(α), ∀ α ∈ (0, a]. (3)

In this article, we generalize the previous concept, mainly by allowing the function
ρ(λ) appearing in the left hand side of (3) to be substituted by a general function s(λ)

with similar properties.

Remark 1.2 It is important to point out that in [1] the “classical qualification” of a
method was defined to be the number μ0 in Definition 1.1 (even in the case μ0 = ∞).
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However, from our point of view the “generalized qualification” of a method will
not be a number but rather a function of the regularization parameter α as an order
of convergence in the sense of Definition 1.2. In the case of SRMs with classical
qualification of positive finite order μ0, the corresponding generalized qualification
will be shown to be the function ρ(α) = αμ0 , coinciding with the classical approach.
Since in the extreme cases μ0 = 0 and μ0 = ∞ that function does not define an order
of convergence, we have preferred to exclude them from the definition of classical
qualification (Definition 1.1) and, accordingly, we shall say that the method does not
have classical qualification.

The organization of this article is as follows. In Sect. 2 the concepts of weak and
strong source-order pair and of order-source pair are defined and three qualification
levels for SRM are introduced: weak, strong and optimal. A sufficient condition for
the existence of weak qualification is provided and necessary and sufficient condi-
tions for an order of convergence to be strong or optimal qualification are given. In
Sect. 3, examples of all qualification levels are provided and the relationships between
them and with the classical qualification and the qualification introduced in [3] are
shown. In particular, SRMs having qualification in each one of the three levels and
not having classical qualification are presented. Finally several implications of this
theory in the context of orders of convergence, converse results and maximal source
sets for inverse ill-posed problems are shown in Sect. 4.

2 Source-Order and Order-Source Pairs. Generalized Qualification and
Qualification Levels

It is well known that there exist SRMs for which the corresponding μ0 given in Def-
inition 1.1 is infinity, e.g. truncated singular value decomposition (TSVD), Landwe-
ber’s method and Showalter’s method. However, a careful analysis leads to observe
that the concept of qualification as optimal order of convergence of the regularization
error remains alive underlying most of these and many other methods. In this section
we generalize the definition of qualification introduced by Mathé-Pereverzev in [3]
and thereby the notion of classical qualification of a SRM. Also three different levels
of qualification are introduced: weak, strong and optimal. These levels introduce nat-
ural hierarchical categories for the SRMs and we show that the generalized qualifica-
tion corresponds to the lowest of these levels. Moreover, a sufficient condition which
guarantees that a SRM possesses qualification in the sense of this generalization is
provided and necessary and sufficient conditions for a given order of convergence to
be strong or optimal qualification are found.

We denote with O the set of all non decreasing functions ρ : R
+ → R

+ such that
limα→0+ ρ(α) = 0 and with S the set of all continuous functions s : R

+
0 → R

+
0 sat-

isfying s(0) = 0 and such that s(λ) > 0 for every λ > 0. If moreover s is increasing,
then it is an index function in the sense of Mathé-Pereverzev ([3]).

Definition 2.1 Let ρ, ρ̃ ∈ O. We say that “ρ precedes ρ̃ at the origin” and we denote
it with ρ 
 ρ̃, if there exist positive constants c and ε such that ρ(α) ≤ c ρ̃(α) for
every α ∈ (0, ε).
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Definition 2.2 Let ρ, ρ̃ ∈ O. We say that “ρ and ρ̃ are equivalent at the origin” and
we denote it with ρ ≈ ρ̃, if they precede each other at the origin, that is, if there exist
constants ε, c1, c2, ε > 0, 0 < c1 ≤ c2 < ∞ such that c1 ρ(α) ≤ ρ̃(α) ≤ c2 ρ(α) for
every α ∈ (0, ε).

Clearly, ≈ introduces an equivalence relation in O. Analogous definitions and
notation will be used for s, s̃ ∈ S .

Definition 2.3 Let {gα} be a SRM, rα(λ)
.= 1 − λgα(λ), ρ ∈ O and s ∈ S.

(i) We say that (s, ρ) is a weak source-order pair for {gα} if it satisfies

s(λ) |rα(λ)|
ρ(α)

= O(1), for α → 0+, ∀ λ > 0. (4)

(ii) We say that (s, ρ) is a strong source-order pair for {gα} if it is a weak source-
order pair and there is no λ > 0 for which O(1) in (4) can be replaced by o(1).
That is, if (4) holds and also

lim sup
α→0+

s(λ) |rα(λ)|
ρ(α)

> 0, ∀ λ > 0. (5)

(iii) We say that (ρ, s) is an order-source pair for {gα} if there exist a constant γ > 0
and a function h : (0, α0) → R

+ with limα→0+ h(α) = 0, such that

s(λ) |rα(λ)|
ρ(α)

≥ γ, ∀ λ ∈ [h(α),+∞). (6)

In the previous definitions we shall refer to the function ρ as the “order of con-
vergence” and to s as the “source function”. The reason for using this terminology
will become clear in Sect. 4 when we shall see applications of these concepts in the
context of direct and converse results for regularization methods.

The following observations follow immediately from the definitions.

(i) If (s, ρ) is a weak source-order pair for {gα} which is not a strong source-order
pair, then there exists λ0 > 0 such that lim supα→0+ s(λ0)|rα(λ0)|

ρ(α)
= 0 and therefore

(ρ, s) cannot be an order-source pair for {gα}. Thus if (ρ, s) is an order-source
pair and (s, ρ) is a weak source-order pair, then (s, ρ) is further a strong source-
order pair in the sense of (ii).

(ii) Let ρ, ρ̃ ∈ O.
(a) If (s, ρ) is a weak source-order pair for {gα} and ρ 
 ρ̃, then (s, ρ̃) is also a

weak source-order pair for {gα}.
(b) If (s, ρ) is a weak source-order pair for {gα} and s̃ ∈ S is such that there

exists c > 0 for which s̃(λ) ≤ c s(λ) for every λ > 0, then (s̃, ρ) is also a
weak source-order pair for {gα}.

In the following definition we introduce the concept of generalized qualification
and three different levels of it.
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Definition 2.4 Let {gα} be a SRM.

(i) We say that ρ is a weak or generalized qualification of {gα} if there exists a
function s such that (s, ρ) is a weak source-order pair for {gα}.

(ii) We say that ρ is a strong qualification of {gα} if there exists a function s such
that (s, ρ) is a strong source-order pair for {gα}.

(iii) We say that ρ is an optimal qualification of {gα} if there exists a function s such
that (s, ρ) is a strong source-order pair for {gα} (it is sufficient that (s, ρ) be a
weak source-order pair) and (ρ, s) is an order-source pair for {gα}.

It is important to observe that weak qualification generalizes the concept of quali-
fication introduced by Mathé and Pereverzev in [3] and therefore, the notion of clas-
sical qualification. In fact, if {gα} has continuous qualification ρ(α) in the sense of
Definition 1.2 and limα→0+ ρ(α) = 0, then the function

ρ̃(α)
.=

⎧

⎪⎪⎨

⎪⎪⎩

0, si α = 0,

ρ(α), si 0 < α ≤ a,

ρ(a), si α > a,

(7)

is a weak qualification of {gα}. However, these two notions are not equivalent. We
shall see later on that it is possible for a function to be weak qualification of a SRM
and not be qualification according to Definition 1.2 (see comments at the end of
Sect. 3).

It is timely to note here that if {gα} has classical qualification of order μ0, then
ρ(α) = αμ is weak qualification of {gα} and moreover (λμ,αμ) is a weak source-
order pair for {gα} for every μ ∈ (0,μ0]. Conversely, if for μ > 0, (λμ,αμ) is a
weak source-order pair for {gα}, then this method has classical qualification (of order
μ0 ≥μ) provided that μ0

.= sup {μ : (λμ,αμ) is a weak source-order pair for {gα}} <

+∞.
The following result provides a sufficient condition for the existence of weak qual-

ification of a SRM.

Theorem 2.1 Let {gα} be a SRM such that, for every fixed λ > 0, gα(λ) is decreasing
in α, for α ∈ (0, α0).

(a) If there exist an increasing function h : (0, α0) → R
+ with limα→0+ h(α) = 0,

ρ∗ ∈ O and ε > 0 such that, for every α ∈ (0, ε),

sup
λ∈[h(α),+∞)

|rα(λ)| ≤ ρ∗(α), (8)

then {gα} has a weak qualification and in that case ρ∗ is a weak qualification of
the method.

(b) If for every α ∈ (0, α0), rα(λ) is positive and monotone decreasing for λ ∈
(0,+∞), then it is always possible to find h and ρ∗ as in (a) satisfying (8) for all
α ∈ (0, α0).

Proof (a) Let h : (0, α0) → R
+ be an increasing function with limα→0+ h(α) = 0,

ρ∗ ∈ O and ε > 0 such that for every α ∈ (0, ε) condition (8) holds.
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Case I: There exists α̃ ∈ (0, ε) such that supλ∈[h(α̃),+∞) |rα̃(λ)| > 0.
Since h(α) is increasing, it follows that supλ∈[h(α),+∞) |rα(λ)| > 0 for every α ∈

(0, α̃]. Let λ0 > 0. Then for every α ∈ (0, α̃],
|rα(λ0)|
ρ∗(α)

≤ |rα(λ0)|
supλ∈[h(α),+∞) |rα(λ)| . (9)

Since limα→0+ h(α) = 0, there exists α∗ ∈ (0, α̃) such that λ0 ∈ [h(α),+∞) for
every α ∈ (0, α∗], from which it follows that, for every α ∈ (0, α∗],

|rα(λ0)|
supλ∈[h(α),+∞) |rα(λ)| ≤ 1. (10)

From (9) and (10) it follows that, for every λ0 > 0

lim sup
α→0+

|rα(λ0)|
ρ∗(α)

≤ 1.

Then, for any bounded s ∈ S the pair (s, ρ∗) satisfies (4), i.e., it is a weak source-
order pair for {gα}. Thus, we have proved that ρ∗ is a weak qualification of {gα}.

Case II: supλ∈[h(α),+∞) |rα(λ)| = 0 for every α ∈ (0, ε).
Let λ0 > 0. Since limα→0+ h(α) = 0, there exists α∗ ∈ (0, ε) such that λ0 ∈

[h(α),+∞) for every α ∈ (0, α∗]. Then |rα(λ0)| ≤ supλ∈[h(α),+∞) |rα(λ)| = 0 for
every α ∈ (0, α∗), from what it follows that rα(λ0) = 0. Then, for any s ∈ S ,

s(λ0)rα(λ0)

ρ∗(α)
= 0, for all α ∈ (0, α∗).

Therefore, (s, ρ∗) is a weak source-order pair for {gα}, which implies that ρ∗ is weak
qualification of {gα}. (Note that in this case any ρ∗ ∈ O is weak qualification of {gα}.)

(b) Let {gα} be a SRM such that for every α ∈ (0, α0), rα(λ) is positive and
monotone decreasing for λ ∈ (0,+∞). For λ > 0, we define f (λ)

.= (1 − e−λ)θ(λ),
where

θ(λ)
.= sup{γ ∈ (0, α0) : rα(λ) ≤ λ, ∀ α ∈ (0, γ )}.

Since for every λ > 0, limα→0+ rα(λ) = 0, it follows that given λ > 0 there exists
γ = γ (λ) > 0 such that rα(λ) ≤ λ for every α ∈ (0, γ ). Then θ(λ) �= −∞, more-
over θ(λ) ∈ (0, α0] for every λ > 0 and therefore, f (λ) ∈ (0, α0) for every λ > 0.
On the other hand, since for every α ∈ (0, α0), rα(λ) is decreasing for λ > 0, it fol-
lows immediately that f is strictly increasing. Furthermore, since f is bounded, it
has countably many jump discontinuity points. Therefore, it is possible to assume,
without loss of generality, that f is continuous (since, if it is not, we can redefine
it in such a way that it be continuous, by subtracting the jumps at the discontinuity
points).

Thus f : R
+ → (0, α0) is continuous, strictly increasing with limλ→0+ f (λ) = 0.

Therefore, its inverse function f −1 exists over the range of f and it is strictly in-
creasing and continuous with limα→0+ f −1(α) = 0. It is possible to extend f −1 to
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(0, α0) in such a way that it preserves all these properties. We shall denote with h this
extension.

For α ∈ (0, α0), we define z(α)
.= supλ∈[h(α),+∞) |rα(λ)| = rα(h(α)). Since for

every α ∈ (0, α0), rα(λ) is positive for all λ > 0, it follows that z(α) is also positive.
Since for every λ > 0, f (λ) < θ(λ), the definition of θ(λ) implies that rf (λ)(λ) ≤ λ

for every λ > 0, or equivalently, rα(h(α)) ≤ h(α) for every α ∈ (0, α0). Then
0 < z(α) ≤ h(α) for every α ∈ (0, α0) and the fact that limα→0+ h(α) = 0 implies
that limα→0+ z(α) = 0. If further z is a non decreasing function, then z ∈ O and
it suffices to define ρ∗ .= z. On the contrary, since z is bounded and positive with
limα→0+ z(α) = 0, there always exists a function ρ∗ ∈ O such that z(α) ≤ ρ∗(α) for
every α ∈ (0, α0), as we wanted to show. �

From the previous theorem, it follows that the SRMs {gα} such that for every
λ > 0, gα(λ) is decreasing for α ∈ (0, α0) and for every α ∈ (0, α0), rα(λ) is positive
and decreasing for λ > 0, do possess weak qualification. It is important to observe
that most of the usual SRMs do in fact satisfy these conditions. In particular this is so
for Landweber’s and Showalter’s methods.

Now, given the SRM {gα} and ρ ∈ O, we define

sρ(λ)
.= lim inf

α→0+
ρ(α)

|rα(λ)| , for λ ≥ 0. (11)

Note that sρ(0) = 0.

In the next three results, we will see that the characteristics of a given function
ρ ∈ O, as a possible strong or optimal qualification of a SRM, can be determined
from properties of that function sρ .

Proposition 2.1 (Necessary and Sufficient Condition for Strong Qualification)
A function ρ ∈ O such that sρ ∈ S is a strong qualification of {gα} if and only if

0 < sρ(λ) < +∞, for every λ > 0. (12)

Proof Suppose that ρ is a strong qualification of {gα}. Then, there exists a function
s ∈ S such that (s, ρ) is a strong source-order pair for {gα}. Then, for every λ > 0,

sρ(λ) = lim inf
α→0+

ρ(α)

|rα(λ)| = 1

lim supα→0+ |rα(λ)|
ρ(α)

= s(λ)

lim supα→0+ s(λ)|rα(λ)|
ρ(α)

.

Thus, (12) follows from (4) and (5).
Conversely, suppose now that 0 < sρ(λ) < +∞ for every λ > 0. We will show that

ρ is strong qualification of {gα}. For that let us see that (sρ, ρ) is a strong source-order
pair for {gα}. Since 0 < sρ(λ) < +∞ for every λ > 0, it follows that

lim sup
α→0+

sρ(λ) |rα(λ)|
ρ(α)

= sρ(λ) lim sup
α→0+

|rα(λ)|
ρ(α)

= 1, ∀ λ > 0.

Then, sρ verifies (4) and (5), which, together with the fact that sρ ∈ S , implies that
(sρ, ρ) is a strong source-order pair and thus ρ is a strong qualification of {gα}. �
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Proposition 2.2 Let ρ ∈ O be a strong qualification of {gα} and s ∈ S . Then, (s, ρ)

is a strong source-order pair for {gα} if and only if there exists k > 0 such that s(λ) ≤
k sρ(λ) for every λ > 0.

Proof Since ρ is a strong qualification, by Proposition 2.1 it follows that sρ(λ) > 0
for every λ > 0 . Suppose now that (s, ρ) is a strong source-order pair for {gα}.
Then, there exist positive constants k and ε such that s(λ)|rα(λ)|

ρ(α)
≤ k for every λ > 0,

α ∈ (0, ε). Then, for every λ > 0,

s(λ)

sρ(λ)
= s(λ) lim sup

α→0+

|rα(λ)|
ρ(α)

= lim sup
α→0+

s(λ) |rα(λ)|
ρ(α)

≤ k,

and therefore s(λ) ≤ k sρ(λ) for every λ > 0.
Conversely, suppose that there exists k > 0 such that s(λ) ≤ k sρ(λ) for every

λ > 0. Since sρ(λ) > 0, it then follows that

k ≥ s(λ)

sρ(λ)
= lim sup

α→0+

s(λ) |rα(λ)|
ρ(α)

, ∀ λ > 0;

that is, (s, ρ) is a weak source-order pair for {gα}. Moreover since s(λ) and sρ(λ)

are positive for all λ > 0, it follows that s(λ) verifies (5) and therefore (s, ρ) is,
furthermore, a strong source-order pair for {gα}. �

Theorem 2.2 (Necessary and Sufficient Condition for an Optimal Qualification) A
function ρ ∈ O such that sρ ∈ S is an optimal qualification of {gα} if and only if sρ
verifies (6) and (12).

Proof Suppose that ρ is an optimal qualification. Then ρ is a strong qualification
and it follows from Proposition 2.1 that sρ verifies (12). Moreover, since ρ is an
optimal qualification, there exists s ∈ S such that (s, ρ) is a strong source-order pair
and (ρ, s) is an order-source pair. From the latter, it follows that there exist a constant
γ > 0 and a function h : (0, α0) → R

+ with limα→0+ h(α) = 0, such that

s(λ) |rα(λ)|
ρ(α)

≥ γ, ∀ λ ∈ [h(α),+∞). (13)

On the other hand, since (s, ρ) is a strong source-order pair for {gα}, it follows from
Proposition 2.2 that there exists k > 0 such that

s(λ) ≤ k sρ(λ), for every λ > 0. (14)

From (13) and (14), it follows that

sρ(λ) |rα(λ)|
ρ(α)

≥ γ

k
, ∀ λ ∈ [h(α),+∞),

that is, sρ satisfies (6) as we wanted to show.
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Conversely, suppose that sρ ∈ S verifies (6) and (12). By Proposition 2.1 we have
that (sρ, ρ) is a strong source-order pair for {gα} and (6) implies that (ρ, sρ) is an
order-source pair. Then, ρ is an optimal qualification of {gα}. �

Next, we will show the uniqueness of the source function.

Theorem 2.3 If ρ is an optimal qualification of {gα}, then there exists at most one
function s (in the sense of the equivalence classes induced by Definition 2.2) such
that (s, ρ) is a strong source-order pair and (ρ, s) is an order-source pair for {gα}.
Moreover if sρ ∈ S , then sρ is such a unique function.

Proof Given that ρ is optimal qualification of {gα}, there exists at least one function
s such that (s, ρ) is a strong source-order pair and (ρ, s) is an order-source pair
for {gα}. Suppose now that there exist s1 and s2 such that (s1, ρ) and (s2, ρ) are
strong source-order pairs and (ρ, s1) and (ρ, s2) are order-source pairs for {gα}. Then
there exist γ > 0 and a function h : (0, α0) → R

+ with limα→0+ h(α) = 0, such that
s2(λ)|rα(λ)|

ρ(α)
≥ γ for every λ ∈ [h(α),+∞). Then,

s1(λ) =
s1(λ)s2(λ)|rα(λ)|

ρ(α)

s2(λ)|rα(λ)|
ρ(α)

≤ s2(λ)

γ

s1(λ) |rα(λ)|
ρ(α)

, ∀λ ∈ [h(α),+∞), ∀α ∈ (0, α0).

(15)
On the other hand, since (s1, ρ) is a strong source-order pair, there exist positive
constants k and ε such that

s1(λ) |rα(λ)|
ρ(α)

≤ k, ∀λ > 0, ∀α ∈ (0, ε). (16)

From (15) and (16), it follows that

s1(λ) ≤ k

γ
s2(λ), ∀λ ∈ [h(α),+∞), ∀α ∈ (0, ε).

Since limα→0+ h(α) = 0, we have that s1(λ) ≤ k
γ

s2(λ) for every λ > 0. Analogously,

by interchanging s1 and s2, it follows that there exists k̃ > 0 such that s2(λ) ≤ k̃ s1(λ)

for every λ > 0 and therefore, s1 ≈ s2.
Suppose now that sρ ∈ S . Since ρ is an optimal qualification of {gα}, it follows

from Theorem 2.2 that sρ verifies (6) and (12). Then, sρ is the unique function such
that (sρ, ρ) is a strong source-order pair and (ρ, sρ) is an order-source pair for {gα}. �

The following is a result about the uniqueness of the order.

Theorem 2.4 If (s, ρ1) and (s, ρ2) are strong source-order pairs for {gα} and there
exists limα→0+ ρ1(α)

ρ2(α)
, then ρ1 ≈ ρ2.
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Proof Suppose that (s, ρ1) and (s, ρ2) are strong source-order pairs for {gα}. We will
first show that lim supα→0+ ρ1(α)

ρ2(α)
> 0. Suppose that

lim sup
α→0+

ρ1(α)

ρ2(α)
= 0. (17)

Since (s, ρ1) is a strong source-order pair, we have that

s(λ) |rα(λ)|
ρ1(α)

= O(1), for α → 0+, ∀ λ > 0, (18)

and

0 < lim sup
α→0+

s(λ) |rα(λ)|
ρ2(α)

= lim sup
α→0+

s(λ) |rα(λ)|
ρ1(α)

ρ1(α)

ρ2(α)
.

It follows from (17) and (18) that the lim sup on the right-hand side of the previous ex-
pression must be equal to zero, which is a contradiction. Then, lim supα→0+ ρ1(α)

ρ2(α)
>0.

Similarly, it is shown that lim supα→0+ ρ2(α)
ρ1(α)

> 0. Since there exists limα→0+ ρ1(α)
ρ2(α)

,

we then have that 0 < limα→0+ ρ1(α)
ρ2(α)

< +∞ and 0 < limα→0+ ρ2(α)
ρ1(α)

< +∞. Then,
ρ1 
 ρ2 and ρ2 
 ρ1, that is, ρ1 ≈ ρ2, as we wanted to show. �

3 Examples

In this section we present several examples which illustrate the different qualification
levels previously introduced as well as the relationships between them and with the
concept of classical qualification and the qualification introduced in [3]. Although
some of these examples are only of academic interest and nature, they do serve to
show the existence of regularization methods possessing qualification in each one of
the levels introduced in this article.

Example 3.1 Tikhonov-Phillips regularization method {gα}, where gα(λ)
.= 1

λ+α
has

classical qualification of order μ0 = 1 ([1]). We will see that ρ(α) = α is optimal
qualification in the sense of Definition 2.4 (iii). In fact, for λ > 0, rα(λ) = α

α+λ
and

if ρ(α) = α then sρ(λ) = lim infα→0+ ρ(α)
|rα(λ)| = limα→0+(λ + α) = λ > 0, that is, sρ

verifies (12). Also since

sρ(λ) |rα(λ)|
ρ(α)

= λ

λ + α
≥ 1

2
, ∀ λ ∈ [α,+∞),

we have that sρ verifies (6). From Theorem 2.2, it then follows that ρ(α) = α is
optimal qualification of {gα}.
Example 3.2 Let {gα} be the family of functions associated to the truncated singular
value decomposition (TSVD),

gα(λ)
.=

{
1
λ
, if λ ∈ [α,+∞)

0, if λ ∈ [0, α).
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It follows that μ0 = +∞, where μ0 is as in Definition 1.1. Therefore, TSVD does
not have classical qualification. In this case we have that

rα(λ) =
{

0, if λ ∈ [α,+∞),

1, if λ ∈ [0, α).

Let h(α) = α and ρ ∈ O. Then

sup
λ∈[h(α),+∞)

|rα(λ)| = sup
λ≥α

|rα(λ)| = 0 ≤ ρ(α), for every α ∈ (0, α0).

Then, it follows from Theorem 2.1(a) that any function ρ ∈ O is weak qualification
of the method. However, TSVD does not have strong qualification. In fact, for any
function ρ ∈ O we have that sρ(λ) = lim infα→0+ ρ(α)

|rα(λ)| = +∞ for every λ > 0.

Proposition 2.1 implies then that ρ is not strong qualification of the method. In [3] it
was observed that TSVD has arbitrary qualification in the sense of Definition 1.2.

Example 3.3 For α ∈ (0, α0), we define

gα(λ)
.= 1 − e− 1

α

λ + e− 1
α

, for every λ ∈ [0,+∞).

It can be immediately verified that {gα} satisfies the hypotheses H1–H3 and therefore
is a SRM. Since rα(λ) = 1+λ

1+λe
1
α

for all λ ∈ [0,+∞), it follows that, for every μ > 0,

|rα(λ)|λμ

αμ
= (1 + λ)λμ

λe
1
α αμ + αμ

= o(1), for α → 0+, for every λ ∈ [0,+∞).

Then, {gα} does not have classical qualification (more precisely μ0 = +∞, where μ0

is as in Definition 1.1).
We will now show that ρ(α) = e− 1

α is optimal qualification of {gα}. Since sρ(λ) =
lim infα→0+ ρ(α)

|rα(λ)| = λ
1+λ

∈ (0,+∞) for every λ > 0, it follows from Proposition 2.1
that ρ is strong qualification of {gα}. Moreover, since

sρ(λ) |rα(λ)|
ρ(α)

= λ

λ + e− 1
α

≥ 1

2
, ∀ λ ∈ [e− 1

α ,+∞),

it follows that sρ verifies (6). Theorem 2.2 then implies that ρ(α) = e− 1
α is optimal

qualification of {gα}.

Example 3.4 For α ∈ (0, α0) with α0 < e−1, define

gα(λ)
.= 1 + (logα)−1

λ − (logα)−1
, for every λ ∈ [0,+∞).
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Clearly, {gα} satisfies hypotheses H1–H3 and therefore is a SRM. Since rα(λ) =
1+λ

1−λ logα
for all λ ∈ [0,+∞), it follows that, for every μ > 0,

|rα(λ)|λμ

αμ
= (1 + λ)λμ

αμ − λαμ logα
→ +∞, for α → 0+, for every λ ∈ [0,+∞).

Then, μ0 = 0 and therefore {gα} does not have classical qualification.
However, we will show that ρ(α) = −(logα)−1 is an optimal qualification of {gα}.

In fact, since sρ(λ) = lim infα→0+ ρ(α)
|rα(λ)| = limα→0+ λ−(logα)−1

1+λ
= λ

1+λ
∈ (0,+∞) for

every λ > 0 and

sρ(λ) |rα(λ)|
ρ(α)

= λ

λ − (logα)−1
≥ 1

2
∀ λ ∈ [−(logα)−1,+∞),

it follows from Theorem 2.2 that ρ(α) = −(logα)−1 is an optimal qualification of
{gα}.

Example 3.5 Let {gα} be the Tikhonov-Phillips regularization method, which, as pre-
viously mentioned, it has classical qualification of order μ0 = 1. In Example 3.1 we
saw that ρ(α) = α is an optimal qualification of this method and therefore it is also

weak qualification of it. Since α 
 α
1
2 it follows from Definition 2.4(i) and Obser-

vation 2(a) that ρ∗(α) = α
1
2 is also weak qualification. However, ρ∗ is not a strong

qualification of the method. In fact, for any s ∈ S , we have that

lim sup
α→0+

s(λ) |rα(λ)|
ρ∗(α)

= lim sup
α→0+

s(λ) α
1
2

α + λ
= 0 ∀ λ > 0.

Example 3.6 Let {gα} be the SRM defined in Example 3.4. This method does not
have a classical qualification since μ0 = 0. We proved that −(logα)−1 is an opti-
mal qualification and therefore, it is also a weak qualification. Since −(logα)−1 

(− logα)− 1

2 , just like in the previous example, it follows immediately that ρ(α) =
(− logα)− 1

2 is a weak qualification. Let us show now that ρ is not a strong qualifica-
tion of the method. For any s ∈ S , we have that

lim sup
α→0+

s(λ) |rα(λ)|
ρ(α)

= lim sup
α→0+

s(λ) (1 + λ)

(1 − λ logα) (− logα)− 1
2

= 0, ∀ λ > 0.

It is important to observe that, if ρ(α) = αμ is a strong qualification of a SRM,
then it follows immediately from the definition of strong source-order pair that the
method has a classical qualification of order μ. The converse, however, is not true as
the next example shows. Hence, it is the weak and not the strong qualification what
generalizes the classical notion of this concept.

Example 3.7 For α ∈ (0, α0) with α0 < 1/2 define

hα(λ)
.= α

α + log( α
α+λ

)
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and

gα(λ)
.=

⎧

⎨

⎩

1−hα(λ)
λ+hα(λ)

, if λ ∈ [2α,+∞),

1−hα(2α)
2α+hα(2α)

= (2α − α+2α2

log 3 )−1, if λ ∈ [0,2α).

In this case,

rα(λ)
.=

⎧

⎨

⎩

α(1+λ)
λ log( α

α+λ
)+α(1+λ)

, if λ ∈ [2α,+∞),

1 − λ(2α − α+2α2

log 3 )−1, if λ ∈ [0,2α).

One can immediately show that {gα} is a SRM with a classical qualification of order
μ0 = 1. However, ρ(α) = α is not a strong qualification of the method. In fact, for
any s ∈ S , we can see that

s(λ) |rα(λ)|
α

= o(1), for α → 0+, ∀ λ ≥ 0,

and therefore condition (5) is not satisfied.

SRMs possessing a strong but not optimal qualification, have very peculiar prop-
erties. Thus for instance, it is possible to show that if ρ is a strong qualification which
is not optimal, then ∀λ > 0, the function sρ(λ)|rα(λ)|

ρ(α)
it is not of bounded variation as

a function of α in any neighborhood of α = 0. Even so, the following three examples
show the existence of SRM having strong but not optimal qualification and they show
that strong qualification in no case implies optimal qualification.

Example 3.8 Given k ∈ R
+, for α,λ > 0 define

gk
α(λ)

.= λ−1(1 − e− λ
α ) − αkλ−3/2

∣
∣sin(λ

3
2 /α)

∣
∣,

so that rk
α(λ) = e− λ

α + αkλ−1/2|sin(λ
3
2 /α)|. It can be checked immediately that {gk

α}
is a SRM with classical qualification of order k. With ρ(α) = αk , we have that, ∀λ >

0,

sρ(λ) = lim inf
α→0+

αk

e− λ
α + αkλ−1/2|sin(λ

3
2 /α)|

= 1

lim sup
α→0+

(α−ke− λ
α + λ−1/2|sin(λ

3
2 /α)|)

= λ1/2.

Since sρ(λ) = λ1/2 ∈ S , from Proposition 2.1, it follows that (sρ, ρ) is a strong
source-order pair and ρ(α) = αk is a strong qualification of the method. However,
for every λ > 0,

lim inf
α→0+

sρ(λ)|rα(λ)|
ρ(α)

= lim inf
α→0+

[

λ1/2α−ke− λ
α +

∣
∣
∣
∣
sin

(
λ

3
2

α

)∣
∣
∣
∣

]

= 0.
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Therefore (6) does not hold and ρ(α) = αk is not an optimal qualification of the
method.

Example 3.9 For α,λ > 0 define gα(λ) as follows:

gα(λ)
.= λ−1(1 − e− λ

α ) − e
− 1√

α λ−3/2
∣
∣sin(λ

3
2 /α)

∣
∣,

so that

rα(λ) = e− λ
α + e

− 1√
α λ−1/2

∣
∣sin(λ

3
2 /α)

∣
∣.

It can be immediately verified that {gα} is a SRM which does not have a classical

qualification (μ0 = ∞). However, with ρ(α)
.= e

− 1√
α , we have that

sρ(λ) = lim inf
α→0+

ρ(α)

rα(λ)

= 1

lim supα→0+[e− λ
α
+ 1√

α + λ−1/2|sin(λ
3
2 /α)|]

= λ
1
2 .

Since sρ(λ) = λ1/2 ∈ S , by Proposition 2.1 (sρ, ρ) is a strong source-order pair and
ρ(α) = e−1/

√
α is a strong qualification of the method. However, ∀λ > 0, we have

that

lim inf
α→0+

sρ(λ)|rα(λ)|
ρ(α)

= lim inf
α→0+

(

λ1/2e
1√
α
− λ

α + |sin(λ
3
2 /α)|) = 0,

and therefore (6) does not hold and ρ(α) = e
− 1√

α is not an optimal qualification of
the method.

Example 3.10 For 0 < α < 1 and λ > 0 define

gα(λ)
.= λ−1(1 − e− λ

α ) + (log α)−1λ−3/2
∣
∣sin(λ

3
2 /α)

∣
∣,

so that

rα(λ) = e− λ
α − (log α)−1λ−1/2

∣
∣sin(λ

3
2 /α)

∣
∣.

Just like in Examples 3.8 and 3.9 it can be easily checked that {gα} is a SRM which
does not have a classical qualification (μ0 = 0), that ρ(α) = −1

log α
is a strong but not

optimal qualification of the method and that (sρ, ρ) is a strong source-order pair with

sρ(λ) = λ
1
2 .

Note that Examples 3.2, 3.3, 3.4, 3.6, 3.9 and 3.10 correspond to SRMs which
do not have a classical qualification; however, they do have generalized qualification,
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falling in some of its three different levels. Also Landweber’s method and Showalter’s
method, which as previously pointed out do not have a classical qualification (in

both cases μ0 = ∞), are SRMs defined by gα(λ)
.= 1

λ
(1 − (1 − μλ)

1
α ) (where α ≤

1, μ < 1
‖T ‖2 ) and gα(λ)

.= 1
λ
(1 − e− λ

α ), respectively. It can be easily proved, by

using Theorem 2.1, that ρ(α) = (1 − μα
1
2 )

1
α is a weak qualification of Landweber’s

method and ρ(α) = e
− 1√

α is a weak qualification of Showalter’s method. However,

in this last case, it can be shown easily that ρ(α) = e
− 1√

α does not satisfy condition
(3) and therefore ρ(α) is not a qualification in the sense of Definition 1.2.

The different qualification levels introduced in this article and the relationships
between them are visualized in Fig. 1.

4 Orders of Convergence, Converse Results and Maximal Source Sets

The generalization of the concept of qualification of a SRM introduced in the previous
sections is strongly related with and it has a broad spectrum of applications in the
context of orders of convergence, converse results and maximal source sets for inverse
ill-posed problems. We present next some results in this direction. However, we point
out that this is not the main objective of the present article. For that reason, some
of this results will be stated without proof. More detailed results in this regard will
appear in a forthcoming article.

Let X,Y be infinite dimensional Hilbert spaces and T : X → Y a bounded, linear
invertible operator such that R(T ) is not closed. For s ∈ S , the set R(s(T ∗T )), will
be referred to as the “source set associated to the function s and the operator T ”. In
all that follows, the hypothesis s ∈ S can be replaced by s continuous on σ(T ∗T )

and s ∈ M0, where M0 is the set of all functions f : R → R
+
0 which are measurable

with respect to the measures d‖Eλx‖2 for every x ∈ X.
The following direct result, whose proof follows immediately from the concept of

weak source-order pair, states that if the exact solution x† of the problem T x = y

belongs to the source set R(s(T ∗T )) and (s, ρ) is a weak source-order pair for {gα},
then the regularization error ‖Rαy − x†‖ has order of convergence ρ(α). For brevity
reasons we do not give the proof here.

Theorem 4.1 Let ρ ∈ O be a weak qualification of {gα} and s ∈ S such that (s, ρ) is
a weak source-order pair for {gα}. If x† .= T †y ∈ R(s(T ∗T )), then ‖(Rα − T †)y‖ =
O(ρ(α)) for α → 0+.

It is important to note here that the previous result can be viewed as a generaliza-
tion of Theorem 4.3 in [1], to the case of SRM with weak qualification and general
source sets. In fact, that result corresponds to the particular case in which {gα} has
classical qualification of order μ.

The following converse result states that if the regularization error has order of
convergence ρ(α) and (ρ, s) is an order-source pair, then the exact solution belongs
to the source set given by the range of the operator s(T ∗T ).
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Fig. 1 Relationships between the different qualification levels, the classical qualification and the qualifi-
cation defined in [3]

Theorem 4.2 If (ρ, s) is an order-source pair for {gα} and ‖(Rα −T †)y‖ = O(ρ(α))

for α → 0+, then x† ∈ R(s(T ∗T )).

Proof The proof follows immediately from the definition of order-source pair for the
SRM {gα}. �
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It is interesting to note that Theorem 4.2 can also be viewed as a generalization of
Theorem 4.11 in [1]. In fact, this corresponds to the particular case in which s(λ)

.=
λμ y ρ(α)

.= αμ. If moreover ρ is an optimal qualification, then the reciprocal of
Theorem 4.2 also holds. This is proved in the following theorem.

Theorem 4.3 If ρ is an optimal qualification of {gα} and sρ ∈ S , then ‖(Rα −
T †)y‖ = O(ρ(α)) for α → 0+ if and only if x† ∈ R(sρ(T ∗T )).

Proof Let ρ be an optimal qualification of {gα} and sρ ∈ S . Then, by Theorem 2.3,
(ρ, sρ) is an order-source pair for {gα} and since ‖(Rα − T †)y‖ = O(ρ(α)) for α →
0+, it follows from Theorem 4.2 that x† ∈ R(sρ(T ∗T )).

Conversely, if x† ∈ R(sρ(T ∗T )), since by virtue of Theorem 2.3 (sρ, ρ) is a strong
source-order pair, Theorem 4.1 implies that ‖(Rα −T †)y‖ = O(ρ(α)) for α → 0+. �

An important result regarding existence and maximality of source sets is the fol-
lowing: if ρ is a strong qualification of a SRM and sρ ∈ S , it follows from Proposi-
tion 2.2 that R(sρ(T ∗T )) is a maximal source set, where ρ is order of convergence
of the regularization error. More precisely, we have the following result.

Theorem 4.4 Let ρ ∈ O be a strong qualification of {gα} such that sρ ∈ S and s ∈ S .
If (s, ρ) is a strong source-order pair for {gα} and R(s(T ∗T )) ⊃ R(sρ(T ∗T )), then
R(s(T ∗T )) = R(sρ(T ∗T )).

Proof Under the hypotheses of the Proposition 2.2, there exists k > 0 such that
s(λ) ≤ k sρ(λ) for every λ > 0, which implies that R(s(T ∗T )) ⊂ R(sρ(T ∗T )). �

If moreover ρ is an optimal qualification, the following stronger result is obtained.

Theorem 4.5 If ρ ∈ O is an optimal qualification of {gα} and sρ ∈ S , then
R(sρ(T ∗T )) is the only source set, where ρ is the order of convergence of the regu-
larization error of {gα}.

Proof This result follows immediately from Theorem 2.3. �

Comments

(i) For the Tikhonov-Phillips regularization method the only source set where
ρ(α) = α is an optimal qualification is R(sρ(T ∗T )) = R(T ∗T ), since in this
case sρ(λ) = λ.

(ii) In Example 3.3 we saw that ρ(α) = e− 1
α is optimal qualification of {gα} and

sρ(λ) = λ
1+λ

. Since λ
1+λ

≈ λ it follows that R(sρ(T ∗T )) = R(T ∗T ) is the only
source set where ρ is order of convergence of the regularization error.

(iii) In Example 3.8, for ρ(α) = αk we have that sρ(λ) = λ1/2. Since ρ is a strong
qualification of this SRM, it follows that R(sρ(T ∗T )) = R(T ∗T )1/2 is a max-
imal source set where ρ(α) is the order of convergence of the regularization
error.
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(iv) As pointed out at the end of Sect. 3, ρ(α) = e
− 1√

α is a weak qualification of
Showalter’s method. It can be shown easily that, for every s ∈ S , (s, ρ) is a weak
source-order pair for the method. Therefore, it follows from Theorem 4.1 that

the regularization error ‖Rαy − x†‖ has the order of convergence ρ(α) = e
− 1√

α

whenever x† ∈ ⋃

s∈ S R(s(T ∗T )).

(v) Same as (iv) happens with the Landweber method and ρ(α) = (1 − μ
√

α )
1
α .

5 Conclusions

In this article we have extended the definition of qualification for the spectral regu-
larization methods introduced by Mathé and Pereverzev in [3]. This extension was
constructed bearing in mind the concept of qualification as the optimal order of con-
vergence of the regularization error that a method can achieve [1–4]). Three different
levels of generalized qualification were introduced: weak, strong and optimal. In par-
ticular, the first of these levels extends the definition introduced in [3] and a SRM
having a weak qualification which is not a qualification in the sense of Definition 1.2
was shown. Sufficient conditions for a SRM to have a weak qualification were pro-
vided, as well as necessary and sufficient conditions for a given order of convergence
to be a strong or optimal qualification. Examples of all three qualification levels were
provided and the relationships between them as well as with the classical concept of
qualification and the qualification introduced in [3] were shown. Several SRMs hav-
ing generalized qualification in each one of the three levels and not having a classical
qualification were presented. In particular, it was shown that the well known TSVD,
Showalter’s and Landweber’s methods do have a weak qualification. Finally several
implications of this theory in the context of orders of convergence, converse results
and maximal source sets for inverse ill-posed problems, were shown briefly. More
detailed results on these implications will appear in a forthcoming article.

References

1. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and Its Ap-
plications, vol. 375. Kluwer Academic, Dordrecht (1996)

2. Mathé, P.: Saturation of regularization methods for linear ill-posed problems in Hilbert spaces. SIAM
J. Numer. Anal. 42(3), 968–973 (2004) (electronic)

3. Mathé, P., Pereverzev, S.V.: Geometry of linear ill-posed problems in variable Hilbert scales. Inverse
Probl. 19(3), 789–803 (2003)

4. Vainikko, G.M.: The discrepancy principle for a class of regularization methods. USSR Comput.
Math. Math. Phys. 22(3), 1–19 (1982)

5. Luecke, G.R., Hickey, K.R.: Convergence of approximate solutions of an operator equation. Houst. J.
Math. 11(3), 345–354 (1985)

6. Vainikko, G.M., Hämarik, U.: Projection Methods and self-regularization in ill-posed problems. Sov.
Math. 29(10), 1–20 (1985)

7. Seidman, T.I.: Nonconvergence results for the application of least-squares estimation to ill-posed
problems. J. Optim. Theory Appl. 30(4), 535–547 (1980)

8. Spies, R.D., Temperini, K.G.: Arbitrary divergence speed of the least-squares method in infinite-
dimensional inverse ill-posed problems. Inverse Probl. 22(2), 611–626 (2006)



J Optim Theory Appl (2009) 141: 547–567 567

9. Dautray, R., Lions, J.-L.: Spectral Theory and Applications. Mathematical Analysis and Numerical
Methods for Science and Technology, vol. 3. Springer, Berlin (1990)

10. Engl, H.W., Kunisch, K., Neubauer, A.: Convergence rates for Tikhonov regularization of nonlinear
ill-posed problems. Inverse Probl. 5(4), 523–540 (1989)

11. Neubauer, A.: On converse and saturation results for regularization methods. In: Beiträge zur ange-
wandten Analysis und Informatik, pp. 262–270. Shaker, Aachen (1994)

12. Neubauer, A.: On converse and saturation results for Tikhonov regularization of linear ill-posed prob-
lems. SIAM J. Numer. Anal. 34(2), 517–527 (1997)


	Generalized Qualification and Qualification Levels for Spectral Regularization Methods
	Abstract
	Introduction and Preliminaries
	Source-Order and Order-Source Pairs. Generalized Qualification and Qualification Levels
	Case I:
	Case II:

	Examples
	Orders of Convergence, Converse Results and Maximal Source Sets
	Comments

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


