

warwick.ac.uk/lib-publications

Original citation:
Bird, Robert F., Gillies, P., Bareford, M. R., Herdman, J. A. and Jarvis, Stephen A.. (2016)
Performance optimisation of inertial confinement fusion codes using mini-applications.
International Journal of High Performance Computing Applications.
Permanent WRAP URL:
http://wrap.warwick.ac.uk/81789

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
This had been posted ahead of publication.
Bird, Robert F., Gillies, P., Bareford, M. R., Herdman, J. A. and Jarvis, Stephen A.. (2016)
Performance optimisation of inertial confinement fusion codes using mini-applications.
International Journal of High Performance Computing Applications. Copyright © 2017 The
Authors. Reprinted by permission of SAGE Publications.
https://doi.org/10.1177/1094342016670225

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP url’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/46522142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/81789
https://doi.org/10.1177/1094342016670225
mailto:wrap@warwick.ac.uk

Performance Optimisation of Inertial

Confinement Fusion Codes using

Mini-applications

R. F. Bird1, P. Gillies2, M. R. Bareford3, J. A. Herdman2, and S.
A. Jarvis1

1Department of Computer Science, University of Warwick, UK
2High Performance Computing, AWE plc Aldermaston, UK

3EPCC, University of Edinburgh, UK

August 26, 2016

Abstract

Despite the recent successes of nuclear energy researchers, the sci-
entific community still remains some distance from being able to create
controlled, self-sustaining fusion reactions. Inertial Confinement Fusion
(ICF) techniques represent one possible option to surpass this barrier,
with scientific simulation playing a leading role in guiding and supporting
their development. The simulation of such techniques allows for safe and
efficient investigation of laser design and pulse shaping, as well as pro-
viding insight into the reaction as a whole. The research presented here
focuses on the simulation code EPOCH, a fully relativistic particle-in-
cell plasma physics code concerned with faithfully recreating laser-plasma
interactions at scale.

A significant challenge in developing large codes like EPOCH is main-
taining effective scientific delivery on successive generations of high-performance
computing architecture. To support this process, we adopt the use of
mini-applications – small code proxies that encapsulate important com-
putational properties of their larger parent counterparts. Through the
development of a mini-application for EPOCH (called miniEPOCH), we
investigate a variety of the performance features exhibited in EPOCH,
expose opportunities for optimisation and increased scientific capability,
and offer our conclusions to guide future changes to similar ICF codes.

1 Introduction

For decades, the UK has been a significant contributor to the research field
of high-intensity laser-plasma interactions. The UK’s Central Laser Facility

1

is home to some of the world’s most advanced high power lasers, which can
deliver Petawatt focused beams, with approximately 10,000 times more power
than the UK National Grid, during picosecond pulses. Developments in the
deployment of relativistically intense ‘long’ laser pulses (to compress fuel) and
fast ‘short’ pulses (for ignition) present significant challenges in computational
plasma physics. Plasmas with intense electromagnetic fields require fully ki-
netic models of particle distribution in 7 dimensions (3 space, 3 momentum and
time); and point design for targets requires the coupling of relativistic kinetic
models with long time-scale radiation hydrodynamics codes. As future gyroki-
netic codes continue to develop to support plasma turbulence studies, in order to
exploit facilities such as ITER for example, the complexity of these simulations
and the demands on the supporting supercomputers will also increase.

Particle-in-Cell (PIC) codes are amongst the most widely used computa-
tional tools in plasma physics research, and help develop further understanding
of both inertial confinement fusion (ICF) and laser-plasma interactions in gen-
eral. The research presented here focuses on the Extensible PIC Open Collab-
oration simulation codebase, named EPOCH [2], which is a nationally funded,
fully relativistic EM particle-in-cell plasma physics code, developed by a leading
network of over 30 UK researchers.

A significant challenge in developing large codes like EPOCH is maintain-
ing effective scientific delivery on successive generations of high-performance
computing architectures. In EPOCH, collections of physical particles are rep-
resented using a smaller number of pseudoparticles; the fields generated by the
motion of these pseudoparticles are calculated using a finite difference time
domain on an underlying grid of fixed spatial resolution. The forces on the
pseudoparticles due to the calculated fields are used to update the velocities of
the pseudoparticles, and these velocities are then used to update their positions.
Using this approach it is possible to reproduce the full range of classical micro-
scale behaviour of a collection of charged particles. Like many codes of this
type, EPOCH is Fortran-based and MPI parallelised; dynamic load balancing
options exist and MPI-IO allows checkpoint re-start on an arbitrary number
of processors. Legacy simulation codes designed and implemented in this way
exhibit poor utilisation of modern hardware features such as vector operations,
and fail to fully exploit all levels of available parallelism – a problem which
is exacerbated by the energy-efficient benefits available through heterogeneous
computing.

The continued development, maintenance and future-proofing of EPOCH
represents a significant software engineering challenge, EPOCH represents decades
of development by skilled domain experts – the code is feature rich, but equally
large and complex. Code porting to explore the potential benefits of new com-
pute architectures represents a significant undertaking, and the resulting ben-
efits of this effort may indeed be small. To help mitigate these problems, we
adopt the use of mini-applications (commonly termed mini-apps) – small code
proxies that encapsulate important computational properties of their larger par-
ent counterparts [3, 12]. The existence of mini-apps is built on the premise that
(i) although simulation codes may have millions of lines of source code, their

2

performance is often dominated by a small subset of the code, and (ii) simulation
codes may contain many physics models that are mathematically distinct, but
in many cases exhibit similar performance characteristics. Mini-apps operate by
encapsulating the most important computational operations and consolidating
physics capabilities that have the same performance profiles; they will typically
be orders of magnitude smaller than their parent code, and as a result be easier
to port, easier to improve, easier to extend, and less likely to be subject to
restrictive licensing governing their use or distribution.

This paper makes a number of contributions:

• We present the development of a new mini-app (miniEPOCH) for the
parent code EPOCH. This mini-app is then used to explore known per-
formance problems within EPOCH, and in particular (i) the increasing
time-step duration during simulation runtime, and (ii) high levels of cache
miss rates due to particle-store fragmentation;

• Using miniEPOCH, we explore opportunities for code optimisation, in-
cluding the utilisation of shared memory, exploiting increasing vector
width, increased vectorisation and improving memory locality.

• We demonstrate the use of a specialised kernel to exploit domain specific
knowledge, leading to improved Particle-Per-Cell (PPC) scaling of the
main PIC algorithm. To do this, a new kernel is introduced which is able
to make additional assumptions about particle movements, falling back to
the original kernel when these assumptions do not hold.

• Finally, we validate these EPOCH optimisations on ARCHER, a 1.6 PFlop/s
Cray XC30, housed at the UK national supercomputing centre at EPCC.
These improvements demonstrate a 2.02× speed-up in the core EPOCH
algorithm and a 1.55× speed-up to the overall application runtime. Ad-
ditionally we demonstrate the ability of an alternate algorithm to enable
increased PPC.

The remainder of this paper is organised as follows: Section 3 provides additional
background on EPOCH and its core algorithms; Section 2 documents an analysis
of related work; Section 3 details performance and algorithmic characteristics
of EPOCH and the resulting mini-app implementation; Section 4 presents a
detailed study of code optimisation using the mini-app, and the translation of
these optimisations to the parent code; Section 5 concludes the paper.

2 Related Work

Despite the benefits of mini-apps being identified as early as 1991 [3], the
re-emergence and use of mini-apps has only gained greater traction in recent
years [12]. There are now examples of mini-app use in co-design, code optimi-
sation and porting, and in the exploration of new programming languages and

3

paradigms. These works include our prior work with EPOCH, on which this
work is directly built [5]. We refine our previous work by further expanding our
investigation, most notably by including a discussion of techniques targeting
increasing numbers of particles-per-cell. Below, we provide a discussion of mini-
apps in the context of PIC research, and highlight some of the most relevant
work to this study.

The use of mini-apps for code optimisation is exemplified in the work by Kar-
lin et al. [16, 15], in which the authors use the mini-app LULESH (Livermore
Unstructured Lagrangian Explicit Shock Hydrodynamics) to demonstrate the
optimisation of multi-material hydrodynamics simulations, increasing both the
performance of their mini-app (which solves a Sedov blast problem) and associ-
ated parent codes, such as Lawrence Livermore National Laboratory’s (LLNL)
arbitrary Lagrangian-Eulerian multi-physics code ALE3D. By using their mini-
app to better focus optimisation efforts, they managed to increase LULESH’s
vector instruction utilisation by a factor of 8, reduce the number of memory
reads by 62%, and reduce the overall application memory footprint by 19%.
These improvements were then mapped back to ALE3D to achieve a 20% re-
duction in overall application runtime [23, 14, 20], performance gains that had
remained undetected until the mini-app investigation.

Further studies demonstrate the use of mini-apps to rapidly investigate both
hardware platforms and programming paradigms. Lavallée et al. [17] demon-
strate how they were able to use the mini-app called HYDRO, developed by CEA
Saclay, to investigate multiple hardware platforms available through the PRACE
Tier-0 Research Infrastructure; similarly, the size of the mini-app greatly aided
their development of several code variants of HYDRO, including those employ-
ing MPI, OpenMP, CUDA, OpenCL, HMPP and UPC – a task that would have
been infeasible using the full production application. The availability of such a
diverse range of code implementations allowed the authors to evaluate a vari-
ety of heterogeneous hardware and assess its viability as a future platform for
the parent application RAMSES [26], an EU-funded computational astrophysics
package used for the study of large-scale structure and galaxy formation. Such
studies demonstrate the importance of mini-apps as a tool to enable studies in
code portability, scaling, and performance.

While particle-in-cell codes are well understood [7, 8, 9, 24], the application
of the mini-app software engineering methodology to the field of plasma physics
and PIC remains largely unexplored. Previous work has been undertaken with
the aim of providing flexible, concise environments for the development of PIC
codes [21, 11]. GTC [18], at only 8,000 lines of code, is one such example of this;
however, GTC is not associated with any parent code per se, and any findings
associated with this code must still be translated to larger production codes in
this code class through additional research. To the best of our knowledge, the
research presented here is the first to develop and apply a PIC mini-app, which
is associated with a large, production-code equivalent.

Mini-apps are increasingly being developed within open source frameworks,
thus allowing the HPC community to benefit from their development. Projects
such as Mantevo [12, 4] and the UK Mini-App Consortium (UKMAC) [1] exist

4

to provide centralised repositories where collections of mini-applications can
exist, selected to represent key scientific areas supported by high-performance
computing simulation.

Finally, as point of clarification, the work presented here focuses on fully rel-
ativistic PIC codes, where Maxwell’s equations are solved using FDTD methods;
this is not the same as those solutions which utilise gyrokinetic equations, or
those that employ Fourier transforms to operate in the time domain.

3 The Extensible PIC Open Collaboration sim-
ulation codebase (EPOCH)

EPOCH is a nationally funded, fully relativistic EM particle-in-cell plasma
physics code, developed by a leading network of over 30 UK researchers. At
the core of this simulation codebase are particle push and field update algo-
rithms, developed by Hartmut Ruhl [25], extended to include advanced features
such as collisions, ionisation and quantum electrodynamics- (QED) driven co-
herent radiation. EPOCH tracks the electric and magnetic fields generated by
the motion of pseudoparticles, and is capable of reproducing the full range of
classical microscale behaviour required to accurately simulate a collection of
charged particles. Figure 1 depicts the core PIC algorithm used in EPOCH,
which typically accounts for over 80% of the application runtime, and consists
of the following three steps:

1. Move the particle across the physical domain, proportional to particle
momenta;

2. Update the particle’s momentum, based upon the local electric fields, mag-
netic fields, and particle shape;

3. Deposit the generated current onto the grid, to act as an intermediary for
particle-particle interactions.

These steps represent a considerable computational workload and are cur-
rently expressed as a single code kernel in which the particle loop spans approx-
imately 500 lines of source code.

To distribute work between processing elements, EPOCH uses a static n-
dimensional MPI domain decomposition, assigning a rectangular region of the
physical domain to each processing element. Each MPI task is then responsible
for a distinct region of the domain, transferring control of particles as they
leave the space, and accepting any particles which may enter. This method
of decomposition is known to exhibit poor performance for problems which
display strong load imbalance, so in the interests of presenting a fair study,
we limit this investigation to problems that remain well balanced throughout
their operation [19]. Techniques do, however, exist to combat such multi-node
load imbalance, and include: i) advanced load balancing strategies [22]; ii) work
stealing and migration [13]; and iii) advanced domain decomposition [10]. The

5

for all species do
for all particles do

◃ Move particles.
position ← position + momentum

◃ Update momentum based on field effects.
e cell ← ⌊position⌋
for all neighbours of e cell do

calculate electric field effects
end for

b cell ← ⌊position + 0.5⌋
for all neighbours of b cell do

calculate magnetic field effects
end for

momentum ← momentum + electric and magnetic field effects

◃ Calculate and deposit currents.
for all neighbour cells do

calculate current
deposit current

end for

end for
end for

Figure 1: Pseudocode depiction of EPOCH’s core particle-in-cell (PIC) algo-
rithm.

6

Bx

Ey

Ex

Ez

Bz

By

Figure 2: A so-called Yee Grid, applying centered finite difference operators on
staggered grids in space and time for each electric and magnetic vector field
component.

investigation of such methods resides outside of the scope of this study, and will
be addressed in future work.

In the current implementation of EPOCH, particles are densely packed, with
a single particle spanning multiple grid cells (typically 3×3). EPOCH employs a
Finite-Difference Time-Domain method (FDTD), and represents electrical and
magnetic fields on a staggered Yee grid [27], as shown in Figure 2. During the
momentum update (step 2), a 25-point stencil in each of 3 dimensions is read
per field, and used to update the particle momenta; the scale of these memory
operations are a significant contributor to the overall application runtime. Once
the current contributions have been calculated (step 3), they are then stored into
a global array at indices determined by the grid vertices touched during particle
movement. This write to multiple indices of a global array limits the possibility
of particles simultaneously depositing current without the need for atomics or
other concurrency control. It is this current deposition that most strongly differ-
entiates PIC from alternative methods; unlike molecular dynamics, for example,
PIC features no particle-particle interactions, instead approximating these using
the Yee grid as an intermediary.

A known performance issue observed during the operation of EPOCH is
that the duration of each time step increases as the simulation progresses. This
problem is demonstrated in Figure 3, where we see a sharp increase in time-
step duration until approximately 4,000 steps, after which time-step duration
stabilises. This observation is counter-intuitive, as there is no change to the
kernel during runtime. This issue has persisted through many generations of
EPOCH; in Section 4 we build on our knowledge and understanding gained in
previous research [6] to address this time-step scaling problem, as well as using
the new EPOCH mini-app to explore further code optimisation opportunities.

7

0 20 40 60 80 100

0.45

0.50

0.55

Window (in units of 100 steps)

T
im

e
(s
)

1.00

1.10

1.20

1.30

S
lo
w

D
ow

n
(×

)

Figure 3: The duration of each time step in EPOCH as a simulation progresses.
Each simulation window, of which there are 100 in total, contains 100 steps.

3.1 Optimisation Considerations

The original version of EPOCH uses a linked list to store its particles. While
this itself does not present a problem, näıve implementations of linked lists offer
no guarantees of contiguous memory access. This means that as data elements
are inserted and deleted, memory allocations take place without consideration
for locality of existing data, and considerable memory fragmentation can occur.
This fragmentation can significantly impact performance, as modern hardware
is optimised for contiguous memory loads, with each issued memory load fetch-
ing an entire cache line. By aligning data and promoting the grouping of data
within cache lines, memory locality can be improved and one can reduce the ef-
fective bandwidth required to load the same amount of data from main memory.
This effect can be seen when particles move across physical processor bound-
aries; as particles exit they are deleted and new particles added at arbitrary
memory addresses. This means that although the initial particle allocation may
be contiguous, the memory access pattern degrades over time, as a function of
particle movement.

A second candidate for improving memory locality, and as a result the ef-
fective memory bandwidth, is to group data in memory such that it will cause
subsequent loads to common addresses. In so doing, memory is more likely to be
resident in cache when it is required, thus reducing cache eviction and thrashing.
To achieve this in miniEPOCH, we implement a particle sort to group spatially
local particles in memory. We then exploit domain specific knowledge to fur-
ther improve this. During the second step of the algorithm, the momentum
of particles is updated based on the surrounding magnetic and electric fields.
Given the staggered nature of the Yee grid (Figure 2), it is possible to group
particles which share a common vertex, and in so doing promote reuse within
the 3-dimensional stencil update.

A further performance limiting factor in EPOCH is its inefficient use of

8

for all species do

for all particles do
◃ Move particles.
position ← position + momentum

end for

◃ Optional Particle Sort.
for all particles do

◃ Update momentum based on field effects.
e cell ← ⌊position⌋
for all neighbours of e cell do

calculate electric field effects
end for

b cell ← ⌊position + 0.5⌋
for all neighbours of b cell do

calculate magnetic field effects
end for

momentum ← momentum + electric and magnetic field effects
end for

for all particles do
◃ Calculate and deposit currents.
for all neighbour cells do

calculate current
deposit current

end for
end for

end for

Figure 4: Pseudocode depiction of EPOCH’s modified particle-in-cell (PIC)
algorithm.

9

0 20 40 60 80 100

0.00

0.50

1.00

1.50

2.00
·107

Window Number (100 steps)

C
ac
h
e
M
is
se
s

L1 Misses (LinkedList) L1 Misses (Array)

L2 Misses (LinkedList) L2 Misses (Array)

L3 Misses (LinkedList) L3 Misses (Array)

Figure 5: Cache misses during a simulation consisting of 100 simulation win-
dows, each window containing 100 steps.

vector instructions (SIMD). Typically, it is desirable to vectorise over the most
computationally intense code regions in order to fully exploit SIMD. In EPOCH
this means vectorising over the particles loop. However, in the current expres-
sion of the algorithm, such auto-vectorisation of particles is not possible due
to a classical update dependency within the current deposition. This update
dependency is key to the PIC algorithm, so where the original code expresses
the kernel as a single large loop, we adapt this in favour of expressing the code
as three discrete steps. We explore this in our mini-app using loop fission, with
pseudocode for this shown in Figure 4. As well as promoting vectorisation,
splitting the code in this way also allows us to sort particles directly after they
have been moved, giving us a stronger guarantee regarding particle reuse during
the field-effect stencil. Hereafter we will refer to these three components as the
move-, stencil- and current- kernels.

While the sort itself does increase the amount of computation required for
the execution, this is mitigated by two factors: i) Much of the computation for
the sort can be done while the particle is in cache from the particle move; and
ii) For particles that are grouped together, we can avoid recomputing shared
properties, which was not previously possible. Further to this, it is also possible
to employ the sort after the stencil kernel, allowing us to place guarantees on the
order in which the current kernel updates global memory, which can in turn be
exploited to remove the classical update dependency and achieve vectorisation.
As auto-vectorisation of all three kernels is possible, we can further increase
vector efficiency by performing scalar replacement on arrays where possible,

10

0 20 40 60 80 100
0

10

20

Window Number (100 steps)

N
or
m
al
is
ed

C
ac
h
e
M
is
se
s

L1 Misses (LinkedList) L1 Misses (Array)

L2 Misses (LinkedList) L2 Misses (Array)

L3 Misses (LinkedList) L3 Misses (Array)

Figure 6: Normalised cache misses during a simulation consisting of 100 simu-
lation windows, each window containing 100 steps.

and employing SIMD lane indexing to ensure all SIMD temporary arrays have
coalesced data accesses.

3.2 Experimental Setup

Throughout this work we report numerical results for the periodic interaction
of two densely packed electron streams. Each pseudoparticle is assumed to have
an individual mass, and wide spanning third order b-spline stencil. Particle
probes are disabled and, unless otherwise stated, a typical problem size of 1282

grid-cells per core is used, with 32 particles per species, per cell, on a fully
packed node. The results detailed in Section 4 were obtained from ARCHER, a
1.6 PFlop/s Cray XC30 housed at the UK national computing centre at EPCC.
ARCHER features 4,920 dual socket Intel Xeon E5-2697v2 Ivy Bridge nodes,
with 24 cores per node. Intel 15.0 was used to compile all code variants, with
the highest level of code optimisation enabled (-O3), and with platform specific
code generation (-xHost) enabled. PAPI 5.3.2.1 was used to gather the results
of selected performance counters, including those used for recording cache misses
and vector instruction counts.

11

Conceptual Layout Physical Memory Layout

Array-of-Structs

Struct-of-Arrays

Array-of-Structs-of-Arrays

x x xx y y yy w w ww ... x x xx y y yy w w ww

x x xx x x x x y yy y y yy w w ww w w w...

x y xw y w x w x wy x y yw w x wy x y w...xyx y w

x y w

x y w

...

SIMD Width

...

Figure 7: A comparison of Array-of-Structs, Structs-of-Arrays, and Array-of-
Structs-of-Arrays data layouts.

4 Results

4.1 Known Performance Issues

During the initial investigation of the increasing duration of time-steps in an
EPOCH execution, it was believed that the primary contributor to the poor
time-step scaling was increasing fragmentation of the linked list. As the particles
move between MPI ranks, it was expected that the particle store would become
more fragmented. As previously discussed, this was due to new particles being
added to the store as they entered the domain, whilst others were removed as
they leave. Figure 5 shows the typical cache miss rates for an unsorted, linked-
list implementation of EPOCH, while Figure 6 shows this data expressed as
relative differences. We can clearly see that as the simulation progresses, the
cache-miss-rate increase is strongly correlated with overall runtime, and peaks
at approximately 4,000 steps. After 4,000 steps, the cache miss rates increase
at a much reduced rate. While this data strongly suggests that the increase in
runtime is caused by the change in cache miss rates, it provides no clue as to
its origin.

To investigate this further, we used the mini-app to implement an alterna-
tive, array-based, particle store. This allows for contiguous access to particles,
avoiding any fragmentation. This greatly improves the time-step scaling of the
mini-app, with Figure 5 showing the representative changes in cache misses for
a version of EPOCH with these changes applied. It is clear that this change
in implementation only partially addresses the problem, with cache hit rates
still scaling poorly as time-steps progress. It is interesting to note the marked
decrease in L3 cache misses, which explains the substantial benefit to runtime
scaling seen in Figure 8 for the array version of EPOCH. Whilst it is clear
from Figure 8 that an array version of EPOCH benefits the overall runtime,
the cache miss figures in Figure 5 identify that a secondary problem still ex-
ists. Further analysis of the cache miss rates directed our attention to the large
stencil required when applying electromagnetic effects to the particle momenta.
Increasing disorder in the particle list may explain the poor cache and memory

12

0 20 40 60 80 100
0.40

0.45

0.50

0.55

Window Number (100 steps)

T
im

e
(s
)

Linked List Array

Figure 8: EPOCH Time-step duration, during a simulation consisting of 100
simulation windows, each window containing 100 steps.

behaviour, it would increase the probability of cache pressure, and the probabil-
ity of spilling during this stencil-gather. Our strategy here was to periodically
sort the particle store, and in so doing investigate the effect particle disorder
had on both cache misses and runtime. Such a sort remedied the problem, and
allowed for near perfect time-step scaling with a maximum deviation of 0.03%
over ten thousand time-steps.

4.2 Vectorisation

Having arrived at a significantly improved array-based version of miniEPOCH,
efforts could then be focused on optimising EPOCH to ensure that it was better
able to utilise current and future hardware. At the outset of this study, EPOCH
was unable to exploit vector operations in its main kernel. The reason for this
was a classic update dependency when accumulating currents, with multiple
particles possibly having to write to the same array location concurrently. Given
the large size of the initial kernel (approximately 500 lines of code), loop fission
could be used to great effect in order to separate out much of the non-dependant
computation which was SIMD-parallel safe. The previously mentioned sort,
combined with iterating over particles on a per vertex basis, allows us to hoist
loop invariant calculations so that they could be performed once per vertex.
This offered a decrease in the overall required computation, and allowed the
compiler to better predict memory access patterns into global memory.

Through code modifications first tested in the mini-app, we were able to
ascertain that the restructured fissioned kernel was able to successfully exploit
vector instructions. Figure 9 shows the SIMD scaling of kernel runtime for
256-bit AVX (4 doubles), 128-bit AVX (2 doubles), and for the code operating
without vectorisation. We see reasonable SIMD scaling for all kernels, except for
move. This is because of its memory-stream-like structure, and the lack of float-

13

Move Stencil Current
0.00

0.05

0.10

T
im

e
(s
)

256-bit AVX 128-bit AVX No Vectorisation

Figure 9: SIMD scaling of miniEPOCH AoS kernels for 256-bit AVX, 128-bit
AVX, and for the code operating without vectorisation.

ing point operations to hide the memory accesses. The stencil and current ker-
nels represent the majority of the time spent in miniEPOCH, and demonstrate
significantly improved performance with SIMD width. Such improvements will
yield further gains if the current trend of increasing SIMD width continues.

We can further improve performance by considering alternate memory lay-
outs used for the array storage. Not only does this change how data is accessed,
it also determines the number of concurrent memory streams the processor has
to track during pre-fetching. Typically, particles are stored in an array of cus-
tom objects (or structs), a technique known as an Array-of-Structs (AoS). By
storing particles as an AoS, a single memory stream is required, with each par-
ticle loaded bringing with it all particle properties from main memory. This
effect holds regardless of the number of properties used in the given kernel,
and can represent a significant overhead for kernels which require few fields.
When processing multiple array elements, as is typical in SIMD, loads must be
gathered from memory, and any writes scattered, incurring a performance cost
and increasing the latency of the memory operations. Alternative approaches
include a Struct-of-Arrays (SoA) and a more complex hybrid, Array-of-Structs-
of-Arrays (AoSoA) (which aims to combine the benefits of both SoA and AoS).
A brief overview of these memory layouts is found in Figure 7, where in our ex-
periments SIMD Width was typically 4, as we were operating on doubles with
256-bit AVX.

For the SoA data layout, single particle properties for multiple particles are
stored together in an array. This means that under SIMD operation, single
properties from multiple particles can be loaded in one contiguous and aligned
load, at the expense of tracking a different memory stream per property required.
This eliminates any potential for gather/scatters, and is often favourable when
only a few particle properties are required. With AoSoA, groups of N elements
of each property are stored together, in order, where N is typically a function of

14

Move Stencil Current

0.00

0.05

0.10

T
im

e
(s
)

256-bit AVX 128-bit AVX No Vectorisation

Figure 10: SIMD scaling of miniEPOCH SoA kernels for 256-bit AVX, 128-bit
AVX, and for the code operating without vectorisation.

vector length. This approach attempts to combine the benefits of both SoA and
AoS, but comes at the expense of vastly increased complexity and an indexing
overhead. In the current kernel configuration, a particle has 6 properties and
stores 1 intermediary value (all types are doubles). The move kernel requires 5
such properties, the stencil kernel requires 6 and the current kernel requires 4.
To investigate enhanced SIMD scaling, we ported the mini-app to each of the
alternative memory layouts – this provides an excellent example of where mini-
apps allow rapid code exploration, which might not otherwise be possible on full
production codes. Figure 10 shows the vector scaling of the SoA implementation,
which compared to Figure 9 shows that the performance is favourable in the
kernels requiring fewer particle field accesses, and generally favourable overall.
This result is largely due to the more effective use of data loaded using SoA, as
no bandwidth is wasted. Figure 11 shows the relative difference in instruction
counts for varying SIMD widths, as recorded by PAPI. For good vector scaling
one would expect to see the number of instructions executed decrease as a
function of SIMD width. We see that both the move and current kernels scale
as expected, but that the stencil kernel is only able to partially benefit from
the increase in SIMD width.

Figure 12 shows the overall performance as a result of each memory layout.
Again we observe that as fewer particle properties are required, SoA performs
better and, as more particle properties are required, so AoS outperforms SoA.
AoSoA pays the cost of masked hardware instructions due to the sparse particle
grouping used, a cost which will be much reduced in future hardware generations
and has already been much reduced on the Intel Xeon Phi product range. We
see that each kernel benefits differently from the change in array layout, largely
due to cache pressure and required memory bandwidth.

As with all mini-app optimisation studies, our goal was to map our improve-

15

Move Stencil Current
0

0.5

1

N
or
m
al
is
ed

In
st
ru
ct
io
n
C
o
u
n
t

256-bit AVX 128-bit AVX No Vectorisation

Figure 11: Normalised instruction counts per kernel for different SIMD widths
for the Struct-of-Arrays (SoA) memory layout.

ments back to the parent code in order to facilitate improved scientific investiga-
tion. Figure 13 shows the overall runtime for an optimised version of EPOCH, as
well as a comparison against the original EPOCH code base and an array-based
implementation. The array versions show a small increase over the original im-
plementation due to the lack of memory fragmentation and increased memory
locality. The optimised version of EPOCH represents a considerable improve-
ment in code performance. It includes all previously discussed improvements,
including spatial sort, increased vectorisation, loop-invariant code hoisting, ar-
ray scalarisation, and coalesced temporary SIMD arrays. These optimisations
deliver a notable improvement to production code runtimes, and successfully
demonstrate the value a mini-app based optimisation investigation. These im-
provements, recorded on ARCHER, a 1.6 PFlop/s Cray XC30, demonstrate a
2.02× speed-up in the core EPOCH algorithm and a 1.55× speed-up to the
overall application runtime.

4.3 Particle-Per-Cell Scaling

The accuracy of PIC simulations is most strongly governed by the number of par-
ticles included in the simulation. We typically choose to describe this parameter
as the number of Particles-Per-Cell (PPC). For a fixed problem, as the number
of PPC increases, the number of real world particles each pseudo-particle in
the simulation represents decreases. This increase in interacting bodies allows
for more complex interactions to take place more frequently, allowing the sim-
ulation to be more true to real life experimentation. As the number of PPC
increase however, so too does the amount of computational work the simulation
is required to do. Whilst it is not guaranteed, this increase is typically linear
with the number of PPC, as there are no direct particle-particle interactions,

16

Move Stencil Current
0

2

4

6

·10−2
T
im

e
(s
)

SoA AoS AoSoA

Figure 12: Kernel runtime for different data layouts.

Original Array Optimised
0

2,000

4,000

T
ot
al

P
u
sh

T
im

e
(s
)

Kernel Cost Sort Cost

Figure 13: Overall runtime for the original and optimised versions of EPOCH
for a 10,000 step run. The additional sort cost is highlighted for clarity.

17

each additional particle introduces an approximately constant amount of work
to the system.

Here we present a technique to efficiently deal with increasing PPC counts,
and the associated increase in computational work. We present a performance
analysis in the context of miniEPOCH, and use it to demonstrate the viability of
the approach to offer good performance on increasing scientific workloads. Such
efficiency will become increasingly important as we continue towards the large
runs required to facilitate exa-scale level science. The presented technique builds
directly on top of the sorting work discussed, and aims to further exploit the
spatial ordering of the particles in conjunction with domain specific knowledge.
In order to achieve this, we implement an alternative kernel, with specialised
logic, to operate on sorted regions of particles – specifically, those which do
not cross grid boundaries during the particle push. In so doing, we can reduce
the overall sort cost of the particles, whilst simultaneously seeking to increase
algorithmic efficiency. By exploiting the knowledge that the particle groupings
do not cross any grid boundaries, the specialised kernel can make a variety of
simplifying assumptions.

In the default kernel, there is an overhead to tracking the motion of the
particles. The largest observable over head of this, is maintaining the arrays
of coefficients based on particle movement and shape – tracked as two arrays
per dimension (hx/hy, gx/gy). As the particles move, these array of coefficients
need to be matched based on the direction of particle movement, before any
mathematical operations can be applied. In a kernel with the assumption of no
particle movement, this matching is entirely deterministic and does not need to
be explicitly calculated. This can be leveraged to decrease both the memory
and compute needed to perform this, reducing the stencil from 7 × 7 to 5 × 5,
whilst also guaranteeing static loop bounds.

Whilst this reduction may initially seem modest, it decreases the amount
work by approximately 30% in each dimension. Furthermore this stencil is
iterated across fully in a tight two dimensional loop, representing a reduction in
work by nearly 50%. A range of additional benefits to this technique also exist,
the most important of which is reduced memory bandwidth. Not only does
the decrease in the per-particle array size mean a reduced memory footprint,
it also reduces the traffic to main memory and cache. This in turn increases
the ratio of floating point operations per byte, allowing for increased latency
hiding. Finally, by establishing a tighter bound on the physical domain each
particle can interact with (implemented as shared global memory), this can give
more control and flexibility when multi-threading, as it increases the maximum
amount of concurrency without overlap. This kernel can then be applied to all
particles, with the result being masked out for those particles which do cross a
cell boundary. A second pass of the full algorithm can then instead be applied
to these particles.

By inspecting Figure 14, it can seen that the PPC scaling of the original
EPOCH code is perfectly linear, with an increase in PPC work being mirrored
exactly in runtime. This can be directly contrasted with the optimised version
of the mini-app, which when comparing 32 PPC to 512 PPC takes only 9.91×

18

32 64 128 256 512
0.00

1.00

2.00

3.00

Particles Per Cell

T
im

e
(s
)

EPOCH miniEPOCH

Figure 14: The PPC time scaling of the original EPOCH code base and the
optimised mini-app.

32 64 128 256 512
0.00

5.00

10.00

15.00

Particles Per Cell

N
or
m
al
is
ed

In
st
ru
ct
io
n
s

EPOCH (vec) miniEPOCH (vec) miniEPOCH (novec)

Figure 15: The PPC instruction count scaling of the original EPOCH code base,
and the optimised mini-app.

19

as long to do a 16-fold increase in work. This scaling represents efficiency gains,
with the runtime only increasing between 1.61× and 1.87× compared to the
expected 2×, with an average of 1.78× over the sampled data. This super-
linear scaling indicates that increased workloads are not only possible, but in
fact favourable.

The root cause of these improvements is identified in Figure 15, which analy-
ses the executed instruction counts for both EPOCH and miniEPOCH. We can
see that with vectorisation disabled for miniEPOCH, the instruction through-
put of both codes is very similar. However with vectorisation of miniEPOCH
enabled, we can see that as the number of particles per cell increases, the vec-
torisation efficiency increases, leading to super-linear scaling in the number of
instructions executed relative to the amount of work to be done.

5 Conclusions and Future Work

Despite recent successes at the large laser-based inertial confinement fusion de-
vice at the National Ignition Facility at LLNL, we remain some distance from
being able to create controlled, self-sustaining fusion reactions. Inertial confine-
ment fusion (ICF) represents one leading design for the generation of energy
by nuclear fusion and computing simulations supporting ICF continue on some
of the world’s most powerful supercomputers. The research presented here fo-
cuses on EPOCH, a fully relativistic particle-in-cell plasma physics code. A
significant challenge in developing large codes like EPOCH is maintaining effec-
tive scientific delivery on successive generations of high-performance computing
architecture. To support this process, we adopt the use of mini-applications –
small code proxies that encapsulate important computational properties of their
larger parent counterparts.

Through the development of miniEPOCH, we investigate known time-step
scaling issues within EPOCH and explore possible optimisations. In particular,
this work:

• Presents the development of a new mini-app (miniEPOCH) for the EPOCH
code. This mini-app is then used to explore known performance problems
with EPOCH, and in particular (i) the increasing time-step duration dur-
ing simulation runtime and, (ii) high levels of cache miss rates due to
particle-store fragmentation;

• Explores opportunities for code optimisation in the context of the mini-
app. These optimisations including the utilisation of shared memory, ex-
ploiting increasing vector width and improving memory locality.

• Investigates the use of a specialised kernel which is able to exploit domain
specific knowledge and the spatial relationship between particles within a
timestep in order to reduce the computational and memory requirements
of the calculation. This enables the reuse of intermediate calculations, and
ultimately allows for super-linear PPC scaling.

20

• Validates these findings on ARCHER, a 1.6 PFlop/s Cray XC30, housed
at the UK national supercomputing centre at EPCC. These improvements
demonstrate a 2.02× improvement to the core EPOCH algorithm and a
1.55× speed-up to the overall application runtime.

In future work we hope to optimise the OpenMP 4 variant of EPOCH, with the
aim of delivering cross platform, portable performance, for future heterogeneous
platforms. As OpenMP 4 compilers targeting accelerator platforms become
available, we hope a finely tuned, single-source, version of EPOCH which uses
the described optimisations will be able to successfully target both Intel Xeon
Phi and NVIDIA GPU products. As part of this work an Intel Xeon Phi version
of EPOCH has been developed, and this will form the basis of our efforts for
such work.

Acknowledgments

This research is supported in part by the EPSRC grant “A Radiation Hydro-
dynamic ALE Code for Laser Fusion Energy” (EP/I029117/1), by The Royal
Society, through their Industry Fellowship Scheme (IF090020/AM) and by AWE
through the Warwick-hosted Centre for Computational Plasma Physics. Use of
ARCHER was supported by several Resource Allocation Panel (RAP) awards,
including “High-level Abstractions for Performance, Portability and Continuity
of Scientific Software on Future Computing Systems”. Professor Stephen A.
Jarvis is an AWE William Penney Fellow.

References

[1] UK Mini-App Consortium (UKMAC). http://uk-mac.github.io.

[2] T. D. Arber, K. Bennett, C. S. Brady, M. G. Ramsaym, N. J. Sircombe,
P. Gillies, R. G. Evans, H. Schmitz, A. R. Benn, and C. P. Ridgers. Contem-
porary particle-in-cell approach to laser-plasma modelling. Plasma Physics
and Controlled Fusion, 2015.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, et al. The nas parallel benchmarks. International Journal of
High Performance Computing Applications, 5(3):63–73, 1991.

[4] D. W. Barnette, S. D. Hammond, J. H. Laros, and J. Jayaraj. Using
Miniapplications in a Mantevo Framework for Optimizing Sandia’s SPARC
CFD Code on Multi-Core Many-Core and GPU-Accelerated Compute Plat-
forms. Dec 2012.

[5] R. Bird, P. Gillies, M. Bareford, J. Herdman, and S. Jarvis. Mini-app
driven optimisation of inertial confinement fusion codes. In Cluster Com-

21

puting (CLUSTER), 2015 IEEE International Conference on, pages 768–
776. IEEE, 2015.

[6] R. F. Bird, S. J. Pennycook, S. A. Wright, and S. A. Jarvis. Towards a
Portable and Future-proof Particle-in-Cell Plasma Physics Code. Interna-
tional Workshop on OpenCL, 2014.

[7] C. K. Birdsall and A. B. Langdon. Plasma physics via computer simulation.
CRC Press, 2014.

[8] K. J. Bowers, B. Albright, L. Yin, B. Bergen, and T. Kwan. Ultrahigh
performance three-dimensional electromagnetic relativistic kinetic plasma
simulation. Physics of Plasmas (1994-present), 15(5):055703, 2008.

[9] H. Burau et al. PIConGPU: A Fully Relativistic Particle-in-Cell Code for
a GPU Cluster. IEEE Transactions on Plasma Science, 38(10):2831–2839,
2010.

[10] P. M. Campbell, E. A. Carmona, and D. W. Walker. Hierarchical domain
decomposition with unitary load balancing for electromagnetic particle-in-
cell codes. In Distributed Memory Computing Conference, 1990., Proceed-
ings of the Fifth, volume 2, pages 943–950. IEEE, 1990.

[11] G. Chen, L. Chacón, and D. C. Barnes. An efficient mixed-precision, hy-
brid CPU-GPU implementation of a nonlinearly implicit one-dimensional
particle-in-cell algorithm. Journal of Computational Physics, 231(16):5374–
5388, 2012.

[12] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich. Improving Performance via Mini-applications. Sandia
National Laboratories, Techical Report SAND2009-5574, 2009.

[13] L. V. Kale and G. Zheng. Charm++ and ampi: Adaptive runtime strate-
gies via migratable objects. Advanced Computational Infrastructures for
Parallel and Distributed Applications, pages 265–282, 2009.

[14] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito, M. Gokhale,
R. Haque, R. Hornung, J. Keasler, D. Laney, et al. LULESH Programming
Model and Performance Ports Overview. Lawrence Livermore National
Laboratory (LLNL), Livermore, CA, Tech. Rep, 2012.

[15] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. Devito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. H.
Still. Exploring traditional and emerging parallel programming models us-
ing a proxy application. In Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, IPDPS ’13, pages 919–
932, Washington, DC, USA, 2013. IEEE Computer Society.

22

[16] I. Karlin, J. McGraw, J. Keasler, and B. Still. Tuning the LULESH Mini-
app for Current and Future Hardware. In Nuclear Explosive Code Devel-
opment Conference Proceedings (NECDC12), 2012.

[17] P.-F. Lavallée, G. C. de Verdière, P. Wautelet, D. Lecas, and J.-M. Du-
pays. Porting and optimizing HYDRO to new platforms and programming
paradigms–lessons learnt.

[18] Z. Lin, T. S. Hahm, W. Lee, W. M. Tang, and R. B. White. Turbulent
Transport Reduction by Zonal Flows: Massively Parallel Simulations. Sci-
ence, 281(5384):1835–1837, 1998.

[19] H. Nakashima, Y. Miyake, H. Usui, and Y. Omura. OhHelp: A Scalable
Domain-Decomposing Dynamic Load Balancing for Particle-in-Cell Simu-
lations. In Proceedings of the 23rd International Conference on Supercom-
puting, pages 90–99. ACM, 2009.

[20] A. Nichols. Users manual for ALE3D: An arbitrary Lagrange/Eulerian 3D
code system. Lawrence Livermore National Laboratory, 2007.

[21] J. Payne, D. Knoll, A. McPherson, W. Taitano, L. Chacon, G. Chen, and
S. Pakin. Design and development of a multi-architecture, fully implicit,
charge and energy conserving particle-in-cell framework. Bulletin of the
American Physical Society, 58, 2013.

[22] S. J. Plimpton, D. B. Seidel, M. F. Pasik, R. S. Coats, and G. R. Montry.
A load-balancing algorithm for a parallel electromagnetic particle-in-cell
code. Computer physics communications, 152(3):227–241, 2003.

[23] H. C. Problem. Technical Report LLNL-TR-490254. Lawrence Livermore
National Laboratory.

[24] F. Rossi, P. Londrillo, A. Sgattoni, S. Sinigardi, and G. Turchetti. Robust
Algorithms for Current Deposition and Dynamic Load-balancing in a GPU
Particle-in-Cell Code. In ADVANCED ACCELERATOR CONCEPTS:
15th Advanced Accelerator Concepts Workshop, volume 1507, pages 184–
192. AIP Publishing, 2012.

[25] Ruhl, H. Classical Particle Simulations with the PSC Code.
http://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_

09_10/tvi_mas_compphys/vorlesung/Lecturescript.pdf.

[26] R. Teyssier. Cosmological Hydrodynamics with Adaptive Mesh Refinement:
a new high resolution code called RAMSES. Astronomy & Astrophysics,
385(1):337–364, 2002.

[27] K. S. Yee et al. Numerical solution of initial boundary value problems
involving Maxwells equations in isotropic media. IEEE Trans. Antennas
Propag, 14(3):302–307, 1966.

23

