123 research outputs found
Nonlinear lensing mechanisms in a cloud of cold atoms
We present an experimental study of nonlinear lensing of near-resonant light by a cloud of laser-cooled rubidium atoms, specifically aimed at understanding the role of the interaction time between the light and the atomic vapor. We identify four different nonlinear mechanisms, each associated with a different time constant: electronic nonlinearity, Zeeman optical pumping, hyperfine optical pumping and radiation pressure. Our observations can be quite accurately reproduced using a simple rate equation model which allows for a straightforward discussion of the various effects. The results are important for planning more refined experiments on transverse nonlinear optics and self-organization in samples of cold atoms
On Two Models of the Light Pulse Delay in a Saturable Absorber
A comparative analysis of two approaches to description of the light
modulation pulse delay in a saturable absorber is presented. According to the
simplest model, the delay of the optical pulse is a result of distortion of its
shape due to absorption self-modulation in the nonlinear medium. The second
model of the effect, proposed at the beginning of our century, connects the
pulse delay with the so-called "slow light" resulting from the group velocity
reduction under conditions of the coherent population oscillations. It is shown
that all the known experimental data on the light pulse delay in saturable
absorbers can be comprehensively described in the framework of the simplest
model of saturable absorber and do not require invoking the effect of coherent
population oscillations with spectral hole-burning and anomalous modifications
of the light group velocity. It is concluded that the effect of group velocity
reduction under conditions of coherent population oscillations has not received
so far any experimental confirmation, and the assertions about real observation
of the "slow light" based on this mechanism are groundless.Comment: Regretfully, the journal version of the paper (in Optics and
Spectroscopy) appeared to be strongly corrupted due to ignorant editing. In
particular, "coherent population oscillations" (CPO) was replaced by
"population coherent oscillations" (PCO), "bleaching" - by "clearing", and
"bleachable absorber " - by "clearable absorber". Here we present original
version of the pape
Polarization instabilities in a two-photon laser
We describe the operating characteristics of a new type of quantum oscillator
that is based on a two-photon stimulated emission process. This two-photon
laser consists of spin-polarized and laser-driven K atoms placed in a
high-finesse transverse-mode-degenerate optical resonator, and produces a beam
with a power of 0.2 W at a wavelength of 770 nm. We observe
complex dynamical instabilities of the state of polarization of the two-photon
laser, which are made possible by the atomic Zeeman degeneracy. We conjecture
that the laser could emit polarization-entangled twin beams if this degeneracy
is lifted.Comment: Accepted by Physical Review Letters. REVTeX 4 pages, 4 EPS figure
Rapid assessment of nonlinear optical propagation effects in dielectrics
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process
2020 American College of Rheumatology Guideline for the Management of Reproductive Health in Rheumatic and Musculoskeletal Diseases
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154675/1/art41191.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154675/2/art41191_am.pd
Gene expression biomarkers of response to citalopram treatment in major depressive disorder
There is significant variability in antidepressant treatment outcome, with ∼30–40% of patients with major depressive disorder (MDD) not presenting with adequate response even following several trials. To identify potential biomarkers of response, we investigated peripheral gene expression patterns of response to antidepressant treatment in MDD. We did this using Affymetrix HG-U133 Plus2 microarrays in blood samples, from untreated individuals with MDD (N=63) ascertained at a community outpatient clinic, pre and post 8-week treatment with citalopram, and used a regression model to assess the impact of gene expression differences on antidepressant response. We carried out technical validation of significant probesets by quantitative reverse transcriptase PCR and conducted central nervous system follow-up of the most significant result in post-mortem brain samples from 15 subjects who died during a current MDD episode and 11 sudden-death controls. A total of 32 probesets were differentially expressed according to response to citalopram treatment following false discovery rate correction. Interferon regulatory factor 7 (IRF7) was the most significant differentially expressed gene and its expression was upregulated by citalopram treatment in individuals who responded to treatment. We found these results to be concordant with our observation of decreased expression of IRF7 in the prefrontal cortex of MDDs with negative toxicological evidence for antidepressant treatment at the time of death. These findings point to IRF7 as a gene of interest in studies investigating genomic factors associated with antidepressant response
Ultrafast laser micro-nano structuring of transparent materials with high aspect ratio
Ultrafast lasers are ideal tools to process transparent materials because
they spatially confine the deposition of laser energy within the material's
bulk via nonlinear photoionization processes. Nonlinear propagation and
filamentation were initially regarded as deleterious effects. But in the last
decade, they turned out to be benefits to control energy deposition over long
distances. These effects create very high aspect ratio structures which have
found a number of important applications, particularly for glass separation
with non-ablative techniques. This chapter reviews the developments of
in-volume ultrafast laser processing of transparent materials. We discuss the
basic physics of the processes, characterization means, filamentation of
Gaussian and Bessel beams and provide an overview of present applications
- …