9 research outputs found
CHIASM, the human brain albinism and achiasma MRI dataset
We describe a collection of T1-, diffusion- and functional T2*-weighted magnetic resonance imaging data from human individuals with albinism and achiasma. This repository can be used as a test-bed to develop and validate tractography methods like diffusion-signal modeling and fiber tracking as well as to investigate the properties of the human visual system in individuals with congenital abnormalities. The MRI data is provided together with tools and files allowing for its preprocessing and analysis, along with the data derivatives such as manually curated masks and regions of interest for performing tractography
Structural changes to primary visual cortex in the congenital absence of cone input in achromatopsia
Autosomal recessive Achromatopsia (ACHM) is a rare inherited disorder associated with dysfunctional cone photoreceptors resulting in a congenital absence of cone input to visual cortex. This might lead to distinct changes in cortical architecture with a negative impact on the success of gene augmentation therapies. To investigate the status of the visual cortex in these patients, we performed a multi-centre study focusing on the cortical structure of regions that normally receive predominantly cone input. Using high-resolution T1-weighted MRI scans and surface-based morphometry, we compared cortical thickness, surface area and grey matter volume in foveal, parafoveal and paracentral representations of primary visual cortex in 15 individuals with ACHM and 42 normally sighted, healthy controls (HC). In ACHM, surface area was reduced in all tested representations, while thickening of the cortex was found highly localized to the most central representation. These results were comparable to more widespread changes in brain structure reported in congenitally blind individuals, suggesting similar developmental processes, i.e., irrespective of the underlying cause and extent of vision loss. The cortical differences we report here could limit the success of treatment of ACHM in adulthood. Interventions earlier in life when cortical structure is not different from normal would likely offer better visual outcomes for those with ACHM
Structural differences across multiple visual cortical regions in the absence of cone function in congenital achromatopsia
Most individuals with congenital achromatopsia (ACHM) carry mutations that affect the retinal phototransduction pathway of cone photoreceptors, fundamental to both high acuity vision and colour perception. As the central fovea is occupied solely by cones, achromats have an absence of retinal input to the visual cortex and a small central area of blindness. Additionally, those with complete ACHM have no colour perception, and colour processing regions of the ventral cortex also lack typical chromatic signals from the cones. This study examined the cortical morphology (grey matter volume, cortical thickness and cortical surface area) of multiple visual cortical regions in ACHM (n=15) compared to normally sighted controls (n=42) to determine the cortical changes that are associated with the retinal characteristics of ACHM. Surface-based morphometry was applied to T1-weighted MRI in atlas-defined early, ventral and dorsal visual regions of interest. Reduced grey matter volume in V1, V2, V3 and V4 was found in ACHM compared to controls, driven by a reduction in cortical surface area as there was no significant reduction in cortical thickness. Cortical surface area (but not thickness) was reduced in a wide range of areas (V1, V2, V3, TO1, V4 and LO1). Reduction in early visual areas with large foveal representations (V1, V2 and V3) suggests that the lack of foveal input to the visual cortex was a major driving factor in morphological changes in ACHM. However, the significant reduction in ventral area V4 coupled with the lack of difference in dorsal areas V3a and V3b suggest that deprivation of chromatic signals to visual cortex in ACHM may also contribute to changes in cortical morphology. This research shows that the congenital lack of cone input to the visual cortex can lead to widespread structural changes across multiple visual areas
Natural visual behavior in individuals with peripheral visual-field loss
Retinitis pigmentosa (RP) is an inherited disease that causes progressive peripheral visual-field loss. In this study, we investigated how such loss affects visual exploration of natural images. Individuals with varying degrees of visual-field loss and healthy control participants freely observed images of different sizes while eye movements were recorded. We examined whether visual behavior differed when the scene content was shown in various extents of the visual field, and investigated the spatial bias, saccade amplitudes, and number and duration of fixations. We found that the healthy control group showed a central spatial bias during image viewing. The RP group showed similar biases on the group level, but with reproducible individual exploration patterns. For saccade amplitudes, the healthy control group and the RP group showed similar behavior throughout all image sizes. The RP group with severe loss of peripheral vision thus tended to target saccades toward blind areas of their visual field. The number of fixations did not change between the two groups, although fixation durations decreased in the RP group. In conclusion, the RP group scanned the images surprisingly similarly to the healthy control group; however, they showed individual idiosyncratic explorative strategies when the observed scene exceeded their visible field. Thus, although RP leads to a severe loss of the visual field, there is no general adaptive mechanism to change visual exploration. Instead, individuals rely on individual strategies, leading to high heterogeneity in the RP group
Preserved Contextual Cueing in Realistic Scenes in Patients with Age-Related Macular Degeneration
International audienceFoveal vision loss has been shown to reduce efficient visual search guidance due to contextual cueing by incidentally learned contexts. However, previous studies used artificial (T- among L-shape) search paradigms that prevent the memorization of a target in a semantically meaningful scene. Here, we investigated contextual cueing in real-life scenes that allow explicit memory of target locations in semantically rich scenes. In contrast to the contextual cueing deficits in artificial scenes, contextual cueing in patients with age-related macular degeneration (AMD) did not differ from age-matched normal-sighted controls. We discuss this in the context of visuospatial working-memory demands for which both eye movement control in the presence of central vision loss and memory-guided search may compete. Memory-guided search in semantically rich scenes may depend less on visuospatial working memory than search in abstract displays, potentially explaining intact contextual cueing in the former but not the latter. In a practical sense, our findings may indicate that patients with AMD are less deficient than expected after previous lab experiments. This shows the usefulness of realistic stimuli in experimental clinical research
Preserved Contextual Cueing in Realistic Scenes in Patients with Age-Related Macular Degeneration
Foveal vision loss has been shown to reduce efficient visual search guidance due to contextual cueing by incidentally learned contexts. However, previous studies used artificial (T- among L-shape) search paradigms that prevent the memorization of a target in a semantically meaningful scene. Here, we investigated contextual cueing in real-life scenes that allow explicit memory of target locations in semantically rich scenes. In contrast to the contextual cueing deficits in artificial scenes, contextual cueing in patients with age-related macular degeneration (AMD) did not differ from age-matched normal-sighted controls. We discuss this in the context of visuospatial working-memory demands for which both eye movement control in the presence of central vision loss and memory-guided search may compete. Memory-guided search in semantically rich scenes may depend less on visuospatial working memory than search in abstract displays, potentially explaining intact contextual cueing in the former but not the latter. In a practical sense, our findings may indicate that patients with AMD are less deficient than expected after previous lab experiments. This shows the usefulness of realistic stimuli in experimental clinical research
Achromatopsia-Visual Cortex Stability and Plasticity in the Absence of Functional Cones
PurposeAchromatopsia is a rare inherited disorder rendering retinal cone photoreceptors nonfunctional. As a consequence, the sizable foveal representation in the visual cortex is congenitally deprived of visual input, which prompts a fundamental question: is the cortical representation of the central visual field in patients with achromatopsia remapped to take up processing of paracentral inputs? Such remapping might interfere with gene therapeutic treatments aimed at restoring cone function.MethodsWe conducted a multicenter study to explore the nature and plasticity of vision in the absence of functional cones in a cohort of 17 individuals affected by autosomal recessive achromatopsia and confirmed biallelic disease-causing CNGA3 or CNGB3 mutations. Specifically, we tested the hypothesis of foveal remapping in human achromatopsia. For this purpose, we applied two independent functional magnetic resonance imaging (fMRI)-based mapping approaches, i.e. conventional phase-encoded eccentricity and population receptive field mapping, to separate data sets.ResultsBoth fMRI approaches produced the same result in the group comparison of achromatopsia versus healthy controls: sizable remapping of the representation of the central visual field in the primary visual cortex was not apparent.ConclusionsRemapping of the cortical representation of the central visual field is not a general feature in achromatopsia. It is concluded that plasticity of the human primary visual cortex is less pronounced than previously assumed. A pretherapeutic imaging workup is proposed to optimize interventions