980 research outputs found

    Koszul properties of the moment map of some classical representations

    Full text link
    This work concerns the moment map μ\mu associated with the standard representation of a classical Lie algebra. For applications to deformation quantization it is desirable that S/(μ)S/(\mu), the coordinate algebra of the zero fibre of μ\mu, be Koszul. The main result is that this algebra is not Koszul for the standard representation of sln\mathfrak{sl}_{n}, and of spn\mathfrak{sp}_{n}. This is deduced from a computation of the Betti numbers of S/(μ)S/(\mu) as an SS-module, which are of interest also from the point of view of commutative algebra.Comment: Revised version. Differences to version 1: title slightly changed, comments added at the end, minor revision

    Star Formation in the Gulf of Mexico

    Full text link
    We present an optical/infrared study of the dense molecular cloud, L935, dubbed "The Gulf of Mexico", which separates the North America and the Pelican nebulae, and we demonstrate that this area is a very active star forming region. A wide-field imaging study with interference filters has revealed 35 new Herbig-Haro objects in the Gulf of Mexico. A grism survey has identified 41 Halpha emission-line stars, 30 of them new. A small cluster of partly embedded pre-main sequence stars is located around the known LkHalpha 185-189 group of stars, which includes the recently erupting FUor HBC 722.Comment: Submitted to A&A, 14 pages, 18 figure

    Biases in Expansion Distances of Novae Arising from the Prolate Geometry of Nova Shells

    Get PDF
    (abridged) Expansion distances (or expansion parallaxes) for classical novae are based on comparing a measurement of the shell expansion velocity, multiplied by the time since outburst, with some measure of the angular size of the shell. We review and formalize this method in the case of prolate spheroidal shells. We present expressions for the maximum line-of-sight velocity from a complete, expanding shell and for its projected major and minor axes, in terms of the intrinsic axis ratio and the inclination of the polar axis to the line of sight. For six distinct definitions of ``angular size'', we tabulate the error in distance that is introduced under the assumption of spherical symmetry (i.e., without correcting for inclination and axis ratio). The errors can be significant and systematic, affecting studies of novae whether considered individually or statistically. Each of the six estimators overpredicts the distance when the polar axis is close to the line of sight, and most underpredict the distance when the polar axis is close to the plane of the sky. The straight mean of the projected semimajor and semiminor axes gives the least distance bias for an ensemble of randomly oriented prolate shells. The best individual expansion distances, however, result from a full spatio-kinematic modeling of the nova shell. We discuss several practical complications that affect expansion distance measurements of real nova shells. Nova shell expansion distances be based on velocity and angular size measurements made contemporaneously if possible, and the same ions and transitions should be used for the imaging and velocity measurements. We emphasize the need for complete and explicit reporting of measurement procedures and results, regardless of the specific method used.Comment: 21 pages, LaTeX, uses aasms4.sty, to be published in Publ. Astron. Soc. of the Pacific, May 200

    Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C kappa carbides

    Full text link
    Carbides play a central role for the strength and ductility in many materials. Simulating the impact of these precipitates on the mechanical performance requires the knowledge about their atomic configuration. In particular, the C content is often observed to substantially deviate from the ideal stoichiometric composition. In the present work, we focus on Fe-Mn-Al-C steels, for which we determined the composition of the nano-sized kappa carbides (Fe,Mn)3AlC by atom probe tomography (APT) in comparison to larger precipitates located in grain boundaries. Combining density functional theory with thermodynamic concepts, we first determine the critical temperatures for the presence of chemical and magentic disorder in these carbides. Secondly, the experimentally observed reduction of the C content is explained as a compromise between the gain in chemical energy during partitioning and the elastic strains emerging in coherent microstructures

    Pre-Main Sequence variables in the VMR-D : identification of T Tauri-like accreting protostars through Spitzer-IRAC variability

    Full text link
    We present a study of the infrared variability of young stellar objects by means of two Spitzer-IRAC images of the Vela Molecular Cloud D (VMR-D) obtained in observations separated in time by about six months. By using the same space-born IR instrumentation, this study eliminates all the unwanted effects usually unavoidable when comparing catalogs obtained from different instruments. The VMR-D map covers about 1.5 square deg. of a site where star formation is actively ongoing. We are interested in accreting pre-main sequence variables whose luminosity variations are due to intermittent events of disk accretion (i.e. active T Tauri stars and EXor type objects). The variable objects have been selected from a catalog of more than 170,000 sources detected at a S/N ratio > 5. We searched the sample of variables for ones whose photometric properties are close to those of known EXor's. These latter are monitored in a more systematic way than T Tauri stars and the mechanisms that regulate the observed phenomenology are exactly the same. Hence the modalities of the EXor behavior is adopted as driving criterium for selecting variables in general. We selected 19 bona fide candidates that constitute a well-defined sample of new variable targets for further investigation. Out of these, 10 sources present a Spitzer MIPS 24 micron counterpart, and have been classified as 3 Class I, 5 flat spectrum and 2 Class II objects, while the other 9 sources have spectral energy distribution compatible with phases older than Class I. This is consistent with what is known about the small sample of known EXor's, and suggests that the accretion flaring or EXor stage might come as a Class I/II transition. We present also new prescriptions that can be useful in future searches for accretion variables in large IR databases.Comment: 35 pages, 12 figures To appear in Ap

    Testing the Relation Between the Local and Cosmic Star Formation Histories

    Get PDF
    Recently, there has been great progress toward observationally determining the mean star formation history of the universe. When accurately known, the cosmic star formation rate could provide much information about Galactic evolution, if the Milky Way's star formation rate is representative of the average cosmic star formation history. A simple hypothesis is that our local star formation rate is proportional to the cosmic mean. In addition, to specify a star formation history, one must also adopt an initial mass function (IMF); typically it is assumed that the IMF is a smooth function which is constant in time. We show how to test directly the compatibility of all these assumptions, by making use of the local (solar neighborhood) star formation record encoded in the present-day stellar mass function. Present data suggests that at least one of the following is false: (1) the local IMF is constant in time; (2) the local IMF is a smooth (unimodal) function; and/or (3) star formation in the Galactic disk was representative of the cosmic mean. We briefly discuss how to determine which of these assumptions fail, and improvements in observations which will sharpen this test.Comment: 14 pages in LaTeX (uses aaspp4.sty). 5 postscript figures. To appear in the Astrophysical Journa

    V1647 Ori (IRAS 05436-0007) in Outburst: the First Three Months

    Full text link
    We report on photometric (BVRIJHK) and low dispersion spectroscopic observations of V1647 Ori, the star that drives McNeil's Nebula, between 10 February and 7 May 2004. The star is photometrically variable atop a general decline in brightness of about 0.3-0.4 magnitudes during these 87 days. The spectra are featureless, aside from H-alpha and the Ca II infrared triplet in emission, and a Na I D absorption feature. The Ca II triplet line ratios are typical of young stellar objects. The H-alpha equivalent width may be modulated on a period of about 60 days. The post-outburst extinction appears to be less than 7 mag. The data are suggestive of an FU Orionis-like event, but further monitoring will be needed to definitively characterize the outburst.Comment: Accepted for publication in the Astronomical Journa

    Trajectories of Experience Through the Pandemic: A Qualitative Longitudinal Dataset

    Get PDF
    Here, we present a dataset collected within a longitudinal interview study that has been conducted as part of a larger project (i.e., Viral Communication), exploring (changing) public attitudes and behaviours through the course of the pandemic in Germany. From a nationally representative survey, forty participants were purposively sampled on the basis of gender, age and socioeconomic status for the interviews. Each participant was interviewed three times within a 10 month time frame (between December 2020 and September 2021), with the exception of two dropouts from the study. The semi-structured interviews were developed to further elaborate on some of the responses in the survey instrument and to provide additional insights into topics and controversies surrounding the Covid-19 pandemic in Germany, such as information/misinformation, trust/distrust, compliance, vaccination, and conspiracy beliefs
    corecore