284 research outputs found

    Weighted Poisson-Delaunay Mosaics

    Full text link
    Slicing a Voronoi tessellation in Rn\mathbb{R}^n with a kk-plane gives a kk-dimensional weighted Voronoi tessellation, also known as power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the kk-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in Rn\mathbb{R}^n, we study the expected number of simplices in the kk-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a byproduct, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in $\mathbb{R}^n

    Random Inscribed Polytopes Have Similar Radius Functions as Poisson-Delaunay Mosaics

    Full text link
    Using the geodesic distance on the nn-dimensional sphere, we study the expected radius function of the Delaunay mosaic of a random set of points. Specifically, we consider the partition of the mosaic into intervals of the radius function and determine the expected number of intervals whose radii are less than or equal to a given threshold. Assuming the points are not contained in a hemisphere, the Delaunay mosaic is isomorphic to the boundary complex of the convex hull in Rn+1\mathbb{R}^{n+1}, so we also get the expected number of faces of a random inscribed polytope. We find that the expectations are essentially the same as for the Poisson-Delaunay mosaic in nn-dimensional Euclidean space. As proved by Antonelli and collaborators, an orthant section of the nn-sphere is isometric to the standard nn-simplex equipped with the Fisher information metric. It follows that the latter space has similar stochastic properties as the nn-dimensional Euclidean space. Our results are therefore relevant in information geometry and in population genetics

    Three-dimensional alpha shapes

    Full text link
    Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the ``shape'' of the set. For that purpose, this paper introduces the formal notion of the family of α\alpha-shapes of a finite point set in \Real^3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter \alpha \in \Real controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size nn in time O(n2)O(n^2), worst case. A robust implementation of the algorithm is discussed and several applications in the area of scientific computing are mentioned.Comment: 32 page

    Topological Data Analysis with Bregman Divergences

    Get PDF
    Given a finite set in a metric space, the topological analysis generalizes hierarchical clustering using a 1-parameter family of homology groups to quantify connectivity in all dimensions. The connectivity is compactly described by the persistence diagram. One limitation of the current framework is the reliance on metric distances, whereas in many practical applications objects are compared by non-metric dissimilarity measures. Examples are the Kullback-Leibler divergence, which is commonly used for comparing text and images, and the Itakura-Saito divergence, popular for speech and sound. These are two members of the broad family of dissimilarities called Bregman divergences. We show that the framework of topological data analysis can be extended to general Bregman divergences, widening the scope of possible applications. In particular, we prove that appropriately generalized Cech and Delaunay (alpha) complexes capture the correct homotopy type, namely that of the corresponding union of Bregman balls. Consequently, their filtrations give the correct persistence diagram, namely the one generated by the uniformly growing Bregman balls. Moreover, we show that unlike the metric setting, the filtration of Vietoris-Rips complexes may fail to approximate the persistence diagram. We propose algorithms to compute the thus generalized Cech, Vietoris-Rips and Delaunay complexes and experimentally test their efficiency. Lastly, we explain their surprisingly good performance by making a connection with discrete Morse theory

    The Morse theory of \v{C}ech and Delaunay complexes

    Full text link
    Given a finite set of points in Rn\mathbb R^n and a radius parameter, we study the \v{C}ech, Delaunay-\v{C}ech, Delaunay (or Alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the \v{C}ech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field.Comment: 21 pages, 2 figures, improved expositio

    Quantifying Transversality by Measuring the Robustness of Intersections

    Full text link
    By definition, transverse intersections are stable under infinitesimal perturbations. Using persistent homology, we extend this notion to a measure. Given a space of perturbations, we assign to each homology class of the intersection its robustness, the magnitude of a perturbations in this space necessary to kill it, and prove that robustness is stable. Among the applications of this result is a stable notion of robustness for fixed points of continuous mappings and a statement of stability for contours of smooth mappings

    Relaxed Disk Packing

    Get PDF
    Motivated by biological questions, we study configurations of equal-sized disks in the Euclidean plane that neither pack nor cover. Measuring the quality by the probability that a random point lies in exactly one disk, we show that the regular hexagonal grid gives the maximum among lattice configurations.Comment: 8 pages => 5 pages of main text plus 3 pages in appendix. Submitted to CCCG 201

    On the Optimality of Functionals over Triangulations of Delaunay Sets

    Get PDF
    In this short paper, we consider the functional density on sets of uniformly bounded triangulations with fixed sets of vertices. We prove that if a functional attains its minimum on the Delaunay triangulation, for every finite set in the plane, then for infinite sets the density of this functional attains its minimum also on the Delaunay triangulations
    • …
    corecore