2,131 research outputs found

    Critical Housing Finance Challenges for Policy Makers

    Get PDF
    Examines barriers for mortgage lending to underserved groups and in distressed neighborhoods, such as risk assessment; financing for multifamily rental markets, such as affordability; and financing for sustainable housing, such as transactional costs

    Chesapeake Bay Status of Stocks Report 1989-1990

    Get PDF
    This is the fourth in a series of documents prepared for the Chesapeake Bay Stock Assessment Committee (CBSAC) under the aegis of Status of Stock Knowledge

    Modelling intrusions through quiescent and moving ambients

    Get PDF
    Volcanic eruptions commonly produce buoyant ash-laden plumes that rise through the stratified atmosphere. On reaching their level of neutral buoyancy, these plumes cease rising and transition to horizontally spreading intrusions. Such intrusions occur widely in density-stratified fluid environments, and in this paper we develop a shallow-layer model that governs their motion. We couple this dynamical model to a model for particle transport and sedimentation, to predict both the time-dependent distribution of ash within volcanic intrusions and the flux of ash that falls towards the ground. In an otherwise quiescent atmosphere, the intrusions spread axisymmetrically. We find that the buoyancy-inertial scalings previously identified for continuously supplied axisymmetric intrusions are not realised by solutions of the governing equations. By calculating asymptotic solutions to our model we show that the flow is not self-similar, but is instead time-dependent only in a narrow region at the front of the intrusion. This non-self-similar behaviour results in the radius of the intrusion growing with time \textrm3/4,ratherthan2/3 , rather than \textrm2/3 as suggested previously. We also identify a transition to drag-dominated flow, which is described by a similarity solution with radial growth now proportional to \textrm5/9$ . In the presence of an ambient wind, intrusions are not axisymmetric. Instead, they are predominantly advected downstream, while at the same time spreading laterally and thinning vertically due to persistent buoyancy forces. We show that close to the source, this lateral spreading is in a buoyancy-inertial regime, whereas far downwind, the horizontal buoyancy forces that drive the spreading are balanced by drag. Our results emphasise the important role of buoyancy-driven spreading, even at large distances from the source, in the formation of the flowing thin horizontally extensive layers of ash that form in the atmosphere as a result of volcanic eruptions

    Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice.

    Get PDF
    Spontaneous mutations in the SHANK-associated RH domain interacting protein (Sharpin) resulted in a severe autoinflammatory type of chronic proliferative dermatitis, inflammation in other organs, and lymphoid organ defects. To determine whether cell-type restricted loss of Sharpin causes similar lesions, a conditional null mutant was created. Ubiquitously expressing cre-recombinase recapitulated the phenotype seen in spontaneous mutant mice. Limiting expression to keratinocytes (using a Krt14-cre) induced a chronic eosinophilic dermatitis, but no inflammation in other organs or lymphoid organ defects. The dermatitis was associated with a markedly increased concentration of serum IgE and IL18. Crosses with S100a4-cre resulted in milder skin lesions and moderate to severe arthritis. This conditional null mutant will enable more detailed studies on the role of SHARPIN in regulating NFkB and inflammation, while the Krt14-Sharpin-/- provides a new model to study atopic dermatitis

    Spiral-Induced Star Formation in the Outer Disks of Galaxies

    Full text link
    The outer regions of galactic disks have received increased attention since ultraviolet observations with GALEX demonstrated that nearly 30% of galaxies have UV emission beyond their optical extents, indicating star formation activity. These galaxies have been termed extended UV (XUV) disks. Here, we address whether these observations contradict the gas surface density threshold for star formation inferred from Halpha radial profiles of galaxies. We run smoothed particle hydrodynamics simulations of isolated disk galaxies with fiducial star formation prescriptions and show that over-densities owing to the presence of spiral structure can induce star formation in extended gas disks. For direct comparison with observations, we use the 3-D radiative transfer code Sunrise to create simulated FUV and K_s band images. We find that galaxies classified as Type I XUV disks are a natural consequence of spiral patterns, but we are unable to reproduce Type II XUV disks. We also compare our results to studies of the Kennicutt-Schmidt relation in outer disks.Comment: Published in Ap

    Intravital FRAP imaging using an E-cadherin-GFP mouse reveals disease- and drug-dependent dynamic regulation of cell-cell junctions in live tissue

    Get PDF
    E-cadherin-mediated cell-cell junctions play a prominent role in maintaining the epithelial architecture. The disruption or deregulation of these adhesions in cancer can lead to the collapse of tumor epithelia that precedes invasion and subsequent metastasis. Here we generated an E-cadherin-GFP mouse that enables intravital photobleaching and quantification of E-cadherin mobility in live tissue without affecting normal biology. We demonstrate the broad applications of this mouse by examining E-cadherin regulation in multiple tissues, including mammary, brain, liver, and kidney tissue, while specifically monitoring E-cadherin mobility during disease progression in the pancreas. We assess E-cadherin stability in native pancreatic tissue upon genetic manipulation involving Kras and p53 or in response to anti-invasive drug treatment and gain insights into the dynamic remodeling of E-cadherin during in situ cancer progression. FRAP in the E-cadherin-GFP mouse, therefore, promises to be a valuable tool to fundamentally expand our understanding of E-cadherin-mediated events in native microenvironments
    corecore