5,832 research outputs found

    Micropulsations in the electric field near the plasmapause, observed by ISEE-1

    Get PDF
    The occurrence of micropulsations near and inside the plasmapause was surveyed. The observed pulsations, classified as Pc3 and Pi2, are discussed. In addition one single event of Pc1 was observed. The frequencies in the Pc3 and Pi2 bands, the amplitude ranges, and the direction of rotation for the electric field vector are reported

    Early results from ISEE-A electric field measurements

    Get PDF
    In the solar wind and in middle latitude regions of the magnetosphere, spacecraft sheath fields obscure the ambient field under low plasma flux conditions such that valid measurements are confined to periods of moderately intense flux. Initial results show: (1) that the DC electric field is enhanced by roughly a factor of two in a narrow region at the front, increasing B, edge of the bow shock, (2) that scale lengths for large changes in E at the subsolar magnetopause are considerably shorter than scale lengths associated with the magnetic structure of the magnetopause, and (3) that the transverse distribution of B-aligned E-fields between the outer magnetosphere and ionospheric levels must be highly complex to account for the random turbulent appearance of the magnetospheric fields and the lack of corresponding time-space variations at ionospheric levels. Spike-like, non-oscillatory, fields lasting less than 0.2 seconds are occasionally seen at the bow shock and at the magnetopause and also intermittently appear in magnetosheath and plasma sheet regions under highly variable field conditions

    Variational electric fields at low latitudes and their relation to spread F and plasma irregularities

    Get PDF
    Recordings from OGO 6 show that electric field irregularities are frequently present between + or - 35 deg geomagnetic latitude in the 2000 - 0600 local time sector. The signatures are very clear, and are easily distinguished from the normal AC background noise, and whistler and emission activity. The spectral appearance of the fields makes it meaningful to distinguish between 3 different types of irregularities: strong irregularities, weak irregularities, and weak irregularities with a rising spectrum. Strong irregularities seem most likely to occur in regions where gradients in ionization are present. Changes in plasma composition, resulting in an increase in the mean ion mass, are also often observed in the irregularity regions. Comparison with ground based ionosondes indicates a connection between strong irregularities and low latitude spread F. A good correlation is also present between strong fields and small scale fluctuations in ionization, delta N/N 1 percent. From the data it appears as if a gradient driven instability is the most likely source of the strong irregularities

    Autonomous three-dimensional formation flight for a swarm of unmanned aerial vehicles

    Get PDF
    This paper investigates the development of a new guidance algorithm for a formation of unmanned aerial vehicles. Using the new approach of bifurcating potential fields, it is shown that a formation of unmanned aerial vehicles can be successfully controlled such that verifiable autonomous patterns are achieved, with a simple parameter switch allowing for transitions between patterns. The key contribution that this paper presents is in the development of a new bounded bifurcating potential field that avoids saturating the vehicle actuators, which is essential for real or safety-critical applications. To demonstrate this, a guidance and control method is developed, based on a six-degreeof-freedom linearized aircraft model, showing that, in simulation, three-dimensional formation flight for a swarm of unmanned aerial vehicles can be achieved

    Unique Observations of a Geomagnetic SI^+ -- SI^- Pair: Solar Sources and Associated Solar Wind Fluctuations

    Full text link
    The paper describes the occurrence of a pair of oppositely directed sudden impulses (SI), in the geomagnetic field (Δ\DeltaX), at ground stations, called SI+{^{+}} -- SI{^{-}} pairs, that occurred between 1835 UT and 2300 UT on 23 April 1998. The SI+{^{+}} -- SI{^{-}} pair, was closely correlated with corresponding variations in the solar wind density, while solar wind velocity and the southward component of the interplanetary magnetic field (Bz) did not show any correspondence. Further, this event had no source on the visible solar disk. However, a rear-side partial halo coronal mass ejection (CME) and an M1.4 class solar flare behind the west limb, took place on 20 April 1998, the date corresponding to the traceback location of the solar wind flows. This event presents empirical evidence, which to our knowledge, is the best convincing evidence for the association of specific solar events to the observations of an SI+{^{+}} -- SI{^{-}} pair. In addition, it shows that it is possible for a rear side solar flare to propagate a shock towards the earth.Comment: The paper has just been accepted in the Journal of Geophysical Research (Space Physics) on 20 September 2010. It is 17 pages with 4 figure

    Disappearance of plasmaspheric hiss following interplanetary shock

    Get PDF
    Abstract Plasmaspheric hiss is one of the important plasma waves controlling radiation belt dynamics. Its spatiotemporal distribution and generation mechanism are presently the object of active research. We here give the first report on the shock-induced disappearance of plasmaspheric hiss observed by the Van Allen Probes on 8 October 2013. This special event exhibits the dramatic variability of plasmaspheric hiss and provides a good opportunity to test its generation mechanisms. The origination of plasmaspheric hiss from plasmatrough chorus is suggested to be an appropriate prerequisite to explain this event. The shock increased the suprathermal electron fluxes, and then the enhanced Landau damping promptly prevented chorus waves from entering the plasmasphere. Subsequently, the shrinking magnetopause removed the source electrons for chorus, contributing significantly to the several-hours-long disappearance of plasmaspheric hiss

    Contamination control for increased crew productivity

    Get PDF
    Contamination control methods that contribute to increased spacecrew productivity are examined in detail. Space station contaminant sources in the water and in the air are described
    corecore