175 research outputs found

    Value of early postoperative epicardial programmed ventricular stimulation studies after surgery for ventricular tachyarrhythmias

    Get PDF
    The value of early postoperative epicardial programmed ventricular stimulation studies after electrophysiologically-directed surgery for ventricular tachyarrhythmia was assessed in 34 patients who underwent epicardial stimulation within 7 to 30 days (mean 9.8) of surgery and were followed up for at least 6 months. The antiarrhythmic operation performed was an endocardial ventriculotomy (full encircling or limited), an endocardial resection, a wall resection or a combination of these procedures. All these interventions were directed by intraoperative mapping during sinus rhythm. Temporary epicardial wire electrodes left at the time of surgery rather than endocardial catheter electrodes were used to perform the pacing. The stimulation protocol included the introduction of up to three ventricular extrastimuli and incremental burst ventricular pacing performed at twice diastolic threshold (9.2 ± 5.8 mA for the right ventricle and 6.0 ± 3.5 mA for the left ventricle). A study was considered positive when ventricular tachycardia, defined as 10 or more consecutive ventricular beats, was induced by any pacing modality.Nineteen patients (Group I) had a negative study: after stimulation of both ventricles in 15 patients and of the left ventricle only in 4. Fifteen patients (Group II) had a positive study: after stimulation of the right ventricle in nine patients and of the left ventricle in six. The two groups were comparable with respect to preoperative clinical status, surgical procedures performed and postoperative ejection fraction. No arrhythmic events were observed in Group I during a mean follow-up period of 19.5 months (range 4 to 37), whereas seven arrhythmic events (47% incidence) occurred (p = 0.0008) in Group II during a mean follow-up period of 17.7 months (range 5 to 39). These arrhythmic events were sudden death (five patients) and sustained ventricular tachycardia (two patients).It is concluded that temporary epicardially-placed electrodes can be used satisfactorily to perform programmed ventricular stimulation studies in the postoperative period, thereby avoiding the cardiac catheterizations otherwise necessary to perform these studies. In addition, the protocol used in this report of epicardial programmed ventricular stimulation early after surgery for ventricular tachyarrhythmia predicts a good outcome if the study is negative and identifies patients at a high risk for future arrhythmic events when positive

    Characterisation of the UK high energy proton research beamline for high and ultra-high dose rate (FLASH) irradiation

    Get PDF
    Objective. This work sets out the capabilities of the high energy proton research beamline developed in the Christie proton therapy centre for Ultra-High Dose Rate (UHDR) irradiation and FLASH experiments. It also characterises the lower limits of UHDR operation for this Pencil Beam Scanning (PBS) proton hardware. Approach. Energy dependent nozzle transmission was measured using a Faraday Cup beam collector. Spot size was measured at the reference plane using a 2D scintillation detector. Integrated depth doses (IDDs) were measured. EBT3 Gafchromic film was used to compare UHDR and conventional dose rate spots. Our beam monitor calibration methodolgy for UHDR is described. A microDiamond detector was used to determine dose rates at zref. Instantaneous depth dose rates were calculated for 70–245 MeV. PBS dose rate distributions were calculated using Folkerts and Van der Water definitions. Main results. Transmission of 7.05 ± 0.1% is achieveable corresponding to a peak instantaneous dose rate of 112.7 Gy s−1. Beam parameters are comparable in conventional and UHDR mode with a spot size of σx = 4.6 mm, σy = 6.6 mm. Dead time in the beam monitoring electonics warrants a beam current dependent MU correction in the present configuration. Fast beam scanning of 26.4 m s−1 (X) and 12.1 m s−1 (Y) allows PBS dose rates of the order tens of Grays per second. Significance. UHDR delivery is possible for small field sizes and high energies enabling research into the FLASH effect with PBS protons at our facility. To our knowledge this is also the first thorough characterisation of UHDR irradiation using the hardware of this clinical accelerator at energies less than 250 MeV. The data set out in this publication can be used for designing experiments at this UK research facility and inform the possible future clinical translation of UHDR PBS proton therapy

    Chemical genetics strategies for identification of molecular targets

    Get PDF
    Chemical genetics is an emerging field that can be used to study the interactions of chemical compounds, including natural products, with proteins. Usually, the identification of molecular targets is the starting point for studying a drug’s mechanism of action and this has been a crucial step in understanding many biological processes. While a great variety of target identification methods have been developed over the last several years, there are still many bioactive compounds whose target proteins have not yet been revealed because no routine protocols can be adopted. This review contains information concerning the most relevant principles of chemical genetics with special emphasis on the different genomic and proteomic approaches used in forward chemical genetics to identify the molecular targets of the bioactive compounds, the advantages and disadvantages of each and a detailed list of successful examples of molecular targets identified with these approaches

    Regulation of Cementoblast Gene Expression by Inorganic Phosphate In Vitro

    Full text link
    Examination of mutant and knockout phenotypes with altered phosphate/pyrophosphate distribution has demonstrated that cementum, the mineralized tissue that sheathes the tooth root, is very sensitive to local levels of phosphate and pyrophosphate. The aim of this study was to examine the potential regulation of cementoblast cell behavior by inorganic phosphate (P i ). Immortalized murine cementoblasts were treated with P i in vitro , and effects on gene expression (by quantitative real-time reverse-transcriptase polymerase chain reaction [RT-PCR]) and cell proliferation (by hemacytometer count) were observed. Dose-response (0.1–10 mM) and time-course (1–48 hours) assays were performed, as well as studies including the Na-P i uptake inhibitor phosphonoformic acid. Real-time RT-PCR indicated regulation by phosphate of several genes associated with differentiation/mineralization. A dose of 5 mM P i upregulated genes including the SIBLING family genes osteopontin ( Opn , >300% of control) and dentin matrix protein-1 ( Dmp-1 , >3,000% of control). Another SIBLING family member, bone sialoprotein ( Bsp ), was downregulated, as were osteocalcin ( Ocn ) and type I collagen ( Col1 ). Time-course experiments indicated that these genes responded within 6–24 hours. Time-course experiments also indicated rapid regulation (by 6 hours) of genes concerned with phosphate/pyrophosphate homeostasis, including the mouse progressive ankylosis gene ( Ank ), plasma cell membrane glycoprotein-1 ( Pc-1 ), tissue nonspecific alkaline phosphatase ( Tnap ), and the Pit1 Na-P i cotransporter. Phosphate effects on cementoblasts were further shown to be uptake-dependent and proliferation-independent. These data suggest regulation by phosphate of multiple genes in cementoblasts in vitro . During formation, phosphate and pyrophosphate may be important regulators of cementoblast functions including maturation and regulation of matrix mineralization.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48015/1/223_2005_Article_184.pd

    Reply

    No full text
    • …
    corecore