244 research outputs found

    Metabolic control and sex: A focus on inflammatory-linked mediators

    Get PDF
    Men and women have many differing biological and physiological characteristics. Thus, it is no surprise that the control of metabolic processes and the mechanisms underlying metabolic-related diseases have sex-specific components. There is a clear metabolic sexual dimorphism in that up until midlife, men have a far greater likelihood of acquiring cardio-metabolic disease than women. Following menopause, however, this difference is reduced, suggestive of a protective role of the female sex hormones. Inflammatory processes have been implicated in the pathogenesis of cardio-metabolic disease with human studies correlating metabolic disease acquisition or risk with levels of various inflammatory markers. Rodent studies employing genetic modifications or novel pharmacological approaches have provided mechanistic insight into the role of these inflammatory mediators. Sex differences impact inflammatory processes and the subsequent biological response. As a consequence, this may affect how inflammation alters metabolic processes between the sexes. Recently, some of our work in the field of inflammatory genes and metabolic control identified a sexual dimorphism in a preclinical model and caused us to question the frequency and scale of such findings in the literature. This review concentrates on inflammatory-related signalling in relation to obesity, insulin resistance, and type 2 diabetes and highlights the differences observed between males and females. Differences in the activation and signalling of various inflammatory genes and proteins present another reason why studying both male and female patients or animals is important in the context of understanding and finding therapeutics for metabolic-related disease

    Functional and structural deficits at accumbens synapses in a mouse model of Fragile X

    Get PDF
    International audienceFragile X is the most common cause of inherited intellectual disability and a leading cause of autism. The disease is caused by mutation of a single X-linked gene called fmr1 that codes for the Fragile X mental retardation protein (FMRP), a 71 kDa protein, which acts mainly as a translation inhibitor. Fragile X patients suffer from cognitive and emotional deficits that coincide with abnormalities in dendritic spines. Changes in spine morphology are often associated with altered excitatory transmission and long-term plasticity, the most prominent deficit in fmr1-/y mice. The nucleus accumbens, a central part of the mesocortico-limbic reward pathway, is now considered as a core structure in the control of social behaviors. Although the socio-affective impairments observed in Fragile X suggest dysfunctions in the accumbens, the impact of the lack of FMRP on accumbal synapses has scarcely been studied. Here we report for the first time a new spike timing-dependent plasticity paradigm that reliably triggers NMDAR-dependent long-term potentiation (LTP) of excitatory afferent inputs of medium spiny neurons (MSN) in the nucleus accumbens core region. Notably, we discovered that this LTP was completely absent in fmr1-/y mice. In the fmr1-/y accumbens intrinsic membrane properties of MSNs and basal excitatory neurotransmission remained intact in the fmr1-/y accumbens but the deficit in LTP was accompanied by an increase in evoked AMPA/NMDA ratio and a concomitant reduction of spontaneous NMDAR-mediated currents. In agreement with these physiological findings, we found significantly more filopodial spines in fmr1-/y mice by using an ultrastructural electron microscopic analysis of accumbens core medium spiny neuron spines. Surprisingly, spine elongation was specifically due to the longer longitudinal axis and larger area of spine necks, whereas spine head morphology and postsynaptic density size on spine heads remained unaffected in the fmr1-/y accumbens. These findings together reveal new structural and functional synaptic deficits in Fragile X

    Synaptic proteomics reveal distinct molecular signatures of cognitive change and C9ORF72 repeat expansion in the human ALS cortex

    Get PDF
    Increasing evidence suggests synaptic dysfunction is a central and possibly triggering factor in Amyotrophic Lateral Sclerosis (ALS). Despite this, we still know very little about the molecular profile of an ALS synapse. To address this gap, we designed a synaptic proteomics experiment to perform an unbiased assessment of the synaptic proteome in the ALS brain. We isolated synaptoneurosomes from fresh-frozen post-mortem human cortex (11 controls and 18 ALS) and stratified the ALS group based on cognitive profile (Edinburgh Cognitive and Behavioural ALS Screen (ECAS score)) and presence of a C9ORF72 hexanucleotide repeat expansion (C9ORF72-RE). This allowed us to assess regional differences and the impact of phenotype and genotype on the synaptic proteome, using Tandem Mass Tagging-based proteomics. We identified over 6000 proteins in our synaptoneurosomes and using robust bioinformatics analysis we validated the strong enrichment of synapses. We found more than 30 ALS-associated proteins in synaptoneurosomes, including TDP-43, FUS, SOD1 and C9ORF72. We identified almost 500 proteins with altered expression levels in ALS, with region-specific changes highlighting proteins and pathways with intriguing links to neurophysiology and pathology. Stratifying the ALS cohort by cognitive status revealed almost 150 specific alterations in cognitively impaired ALS synaptic preparations. Stratifying by C9ORF72-RE status revealed 330 protein alterations in the C9ORF72-RE +ve group, with KEGG pathway analysis highlighting strong enrichment for postsynaptic dysfunction, related to glutamatergic receptor signalling. We have validated some of these changes by western blot and at a single synapse level using array tomography imaging. In summary, we have generated the first unbiased map of the human ALS synaptic proteome, revealing novel insight into this key compartment in ALS pathophysiology and highlighting the influence of cognitive decline and C9ORF72-RE on synaptic composition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40478-022-01455-z

    Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome

    Get PDF
    Fragile X syndrome, the most commonly known genetic cause of autism, is due to loss of the fragile X mental retardation protein, which regulates signal transduction at metabotropic glutamate receptor-5 in the brain. Fragile X mental retardation protein deletion in mice enhances metabotropic glutamate receptor-5-dependent long-term depression in the hippocampus and cerebellum. Here we show that a distinct type of metabotropic glutamate receptor-5-dependent long-term depression at excitatory synapses of the ventral striatum and prefrontal cortex, which is mediated by the endocannabinoid 2-arachidonoyl-sn-glycerol, is absent in fragile X mental retardation protein-null mice. In these mutants, the macromolecular complex that links metabotropic glutamate receptor-5 to the 2-arachidonoyl-sn-glycerolproducing enzyme, diacylglycerol lipase-α (endocannabinoid signalosome), is disrupted and metabotropic glutamate receptor-5-dependent 2-arachidonoyl-sn-glycerol formation is compromised. These changes are accompanied by impaired endocannabinoid-dependent long-term depression. Pharmacological enhancement of 2-arachidonoyl-sn-glycerol signalling normalizes this synaptic defect and corrects behavioural abnormalities in fragile X mental retardation protein-deficient mice. The results identify the endocannabinoid signalosome as

    Anodic stripping voltammetry with graphite felt electrodes for the trace analysis of silver

    Get PDF
    Graphite felt (GF) is a mass produced porous carbon electrode material commonly used in redox flow batteries. Previous studies have suggested GF may have valuable applications in electroanalysis as a low cost disposable carbon electrode material, although most GF sensors have used flow cell arrangements. In this work, an elegant wetting technique is employed that allows GF electrodes to be used in quiescent solution to detect trace levels of silver in water via anodic stripping voltammetry. GF electrodes display good repeatability and a limit of detection of 25 nM of Ag+ in 0.1 M HNO3, with a linear range spanning two orders of magnitude. This compares to a value of around 140 nM when using conventional carbon electrodes. Combined with their low cost and disposable nature, the results suggest GF electrodes can make a valuable contribution to electroanalysis

    The Effect of Tiaprofenic Acid on Blood Pressure Control in Treated Hypertensive Patients

    Get PDF
    Eleven patients with osteoarthritis and mild hypertension completed an 8-week, double-blind crossover study in which 200 mg tiaprofenic acid 3-times daily or placebo were substituted for their normal non-steroidal anti-inflammatory therapy. Systolic blood pressure was significantly higher on tiaprofenic acid therapy than on placebo and plasma renin activity was significantly lower on active treatment. No significant changes were seen in biochemical parameters, though the weight of the patient was also higher on tiaprofenic acid than on placebo. Duration of morning stiffness was also lower on tiaprofenic acid than on placebo. Blood pressure on tiaprofenic acid was not different from baseline readings on other non-steroidal anti-inflammatory drug therapy. This study suggests that tiaprofenic acid, like other non-steroidal anti-inflammatory agents, may interfere with blood pressure control in treated hypertensive patients
    • …
    corecore