132 research outputs found

    Polymer Surface Engineering Via Thiol-Mediated Reactions

    Get PDF
    Synthesis of polymer brushes to decorate a surface with desired functionality typically involves surface-initiated polymerization (SIP) of functional, but non-reactive monomers. This approach suffers major drawbacks associated with synthesizing sufficiently thick polymer brushes containing surface-attached polymer chains of high molecular weight at high grafting density (i.e. cost, synthetic effort and functional group intolerance during polymerization). The research herein seeks to circumvent these limitations by the decoration of surfaces with polymer chains bearing specific pendent functional groups amenable to post-polymerization modification (PPM). In particular, this dissertation leverages PPM via a specific class of click reactions – thiol-click – that 1) enables the rapid generation of a diverse library of functional surfaces from a single substrates precursor, 2) utilizes a structurally diverse range of commercially available or easily attainable reagents, 3) proceeds rapidly to quantitative conversions under mild conditions and 4) opens the door to orthogonal and site-selective functionalization. In the first two studies, radical-mediated thiol-yne and base-catalyzed thiol-isocyanate reactions are demonstrated as modular platforms for the rapid and practical fabrication of highly functional, multicomponent surfaces under ambient conditions. Brush surfaces expressing a three-dimensional configuration of alkyne or isocyanate functionalities were modified with high efficiency and short reaction times using a library of commercially available thiols. In the third study, two routes to multifunctional brush surfaces were demonstrated utilizing orthogonal thiol-click reactions. In the first approach, alkyne-functionalized homopolymer brushes were modified with multiple thiols via a statistical, radical-mediated thiol-yne co-click reaction; and in the second approach, statistical copolymer brushes carrying two distinctly-addressable reactive moieties were sequentially modified via orthogonal base-catalyzed thiol-X (where X represents an isocyanate, epoxy, or α-bromoester) and radical-mediated thiol-yne reactions. In the fourth study thiol-click PPMs are investigated in depth to determine how surface constraints affect the modification process by probing the penetration depth of functional thiol modifiers into pendent isocyanate-containing polymer brushes via neutron reflectivity studies. Also, the synthesis of tapered block copolymer brush surfaces was demonstrated by exploiting the inherent mass transport limitations of post-polymerization modification processes on reactive brush surfaces. In the fifth study a post-polymerization surface modification approach providing pendent thiol functionality along the polymer brush backbone using the photolabile protection chemistry of both o-nitrobenzyl and p-methoxyphenacyl thioethers was developed. Addressing the protecting groups with light not only affords spatial control of reactive thiol functionality but enables a plethora of thiol-mediated transformations with isocyanates and maleimides providing a modular route to create functional polymer surfaces

    Jeb Hensarling on Oversight Concerns Regarding Treasury Conduct of TARP for House Financial Services Committee

    Get PDF

    Planning For the Business of Poultry Farming.

    Get PDF
    12 p

    Test Facilities Capability Handbook: Volume 1 - Stennis Space Center (SSC); Volume 2 - Marshall Space Flight Center (MSFC)

    Get PDF
    The John C. Stennis Space Center (SSC) is located in Southern Mississippi near the Mississippi-Louisiana state line. SSC is chartered as the National Aeronautics and Space Administration (NASA) Center of Excellence for large space transportation propulsion system testing. This charter has led to many unique test facilities, capabilities and advanced technologies provided through the supporting infrastructure. SSC has conducted projects in support of such diverse activities as liquid, and hybrid rocket testing and development; material development; non-intrusive plume diagnostics; plume tracking; commercial remote sensing; test technology and more. On May 30, 1996 NASA designated SSC the lead center for rocket propulsion testing, giving the center total responsibility for conducting and/or managing all NASA rocket engine testing. Test services are now available not only for NASA but also for the Department of Defense, other government agencies, academia, and industry. This handbook was developed to provide a summary of the capabilities that exist within SSC. It is intended as a primary resource document, which will provide the reader with the top-level capabilities and characteristics of the numerous test facilities, test support facilities, laboratories, and services. Due to the nature of continually evolving programs and test technologies, descriptions of the Center's current capabilities are provided. Periodic updates and revisions of this document will be made to maintain its completeness and accuracy

    Poultry Houses in Texas

    Get PDF
    8 p

    How to Produce Quality Eggs.

    Get PDF
    8 p

    Isolation of Spherosomes (Oleosomes) from Onion, Cabbage, and Cottonseed Tissues

    Full text link

    Hearing before the Congressional Oversight Panel

    Get PDF
    RE: Treasury Secretary Timothy F. Geithner; S. H RG . 111– 7
    • …
    corecore