10 research outputs found

    Appendix D: “Alternative Methods of Implementing Generally Accepted Accounting”

    Get PDF
    Rapsmetylester (RME), Ă€ven kallat biodiesel, Ă€r ett biobrĂ€nsle som produceras av rapsolja. Trots att RME Ă€r förnybart Ă€r vĂ€xthusgasutslĂ€ppen i ett livscykelperspektiv inte försumbara, eftersom odlingen av raps ger upphov till utslĂ€pp. Jordbruket Ă€r en av Sveriges största kĂ€llor till klimatpĂ„verkande gaser. UtslĂ€ppen sker framförallt i form av den högpotenta Ă€xthusgasenlustgas som hĂ€rrör frĂ„n produktion och anvĂ€ndning av gödsel, men Ă€ven utslĂ€pp som beror pĂ„ anvĂ€ndning av fossila brĂ€nslen Ă€r signifikanta. År 2009 antogs EU-direktivet 2009/28/EG, som bland annat syftade till att sĂ€kerstĂ€lla de förnybara brĂ€nslenas klimatprestanda, det sĂ„ kallade förnybartdirektivet. I detta direktiv anges kriterier för att biodrivmedel och flytande biobrĂ€nslen ska fĂ„ klassas som förnybara, framförallt krav pĂ„ vĂ€xthusgasutslĂ€ppen i brĂ€nslets livscykel. Direktivet innefattar Ă€ven riktlinjer för hur dessa vĂ€xthusgasutslĂ€pp ska berĂ€knas. Kriterierna har inneburit ett incitament för att förbĂ€ttra klimatprestandan hos biobrĂ€nslen. För att minska sin klimatpĂ„verkan och beroende av fossila brĂ€nslen har tre gĂ„rdar i Östergötland Ă€ndrat sina odlingsmetoder. FörĂ€ndringarna innebĂ€r att dieseln för drift av jordbruksmaskiner och in- och uttransporter bytts ut mot biodiesel (RME), att torkningen av skörden nu sker med trĂ€dbrĂ€nslen istĂ€llet för olja, samt att en del av handelsgödseln ersatts av organiskt gödsel. GĂ„rdarna har sjĂ€lva myntat begreppet Östgötamodellen, som beskriver ett odlingssystem dĂ€r de fossila brĂ€nslena bytts ut mot förnybara, och ibland Ă€ven andra alternativa jordbruksmetoder tillĂ€mpas. Om den raps som odlas enligt Östgötamodellen sedan anvĂ€nds som rĂ„vara för biodieselproduktion pĂ„verkar det brĂ€nslets klimatprestanda. Syftet med denna studie Ă€r att berĂ€kna vĂ€xthusgasutslĂ€ppen frĂ„n odling av raps enligt Östgötamodellen, jĂ€mfört med konventionellt odlad raps. Eftersom rapsen ska anvĂ€ndas till att producera biodiesel har berĂ€kningarna gjorts genom att tillĂ€mpa riktlinjerna för berĂ€kning som anges i EU:s förnybartdirektiv. Metodiken som beskrivs har ett livscykelperspektiv, och kan beskrivas som en förenklad livscykelanalys. BerĂ€kningarna visar att byte av brĂ€nsle till förnybara alternativ ger en minskad klimatbelastning pĂ„ knappt 6 % i odlingsledet. Att ersĂ€tta drygt 20 % av handelsgödseln med slam gav drygt 30 % högre utslĂ€pp frĂ„n odlingen, medan reducerad jordbearbetning gav en nĂ„got lĂ€gre utslĂ€ppsreduktion Ă€n anvĂ€ndning av förnybara brĂ€nslen. Förutom utslĂ€ppen fĂ„r Ă€ven utslĂ€ppsbesparing rĂ€knas med för vissa Ă„tgĂ€rder som ger ökad kolinlagring i jorden och dĂ€rmed förhindrar utslĂ€pp av koldioxid. I denna studie har kolinlagring inkluderats för reducerad jordbearbetning, vilket gav en inlagring motsvarande 9051 g CO2eq/kg raps, jĂ€mfört med odlingsutslĂ€ppen 434 g CO2eq/kg raps. Denna stora inlagring Ă€r orimligt hög jĂ€mfört med tidigare studier. Dessutom visar tidigare studier att Ă€ven slam har en hög kolinlagringspotential, trots att slam för nĂ€rvarande inte tĂ€cks in av definitionerna i riktlinjerna för berĂ€kningen. Vidare konstateras att Östgötamodellen inte minskar lustgasutslĂ€ppen, som Ă€r de utslĂ€pp som kraftigt dominerar vĂ€xthusgasutslĂ€ppen frĂ„n rapsodlingen. Den enda möjligheten att minska de berĂ€knade lustgasutslĂ€ppen enligt den rekommenderade metoden Ă€r dock att minska mĂ€ngden applicerad kvĂ€vegödsel per mĂ€ngd raps, vilket begrĂ€nsar möjligheterna att tillgodorĂ€kna sig andra Ă„tgĂ€rder som minskar lustgasutslĂ€ppen. Förutom berĂ€kningsmetoderna för kolinlagring och lustgasutslĂ€pp sĂ„ synliggör denna rapport mĂ„nga av de problem som uppmĂ€rksammats i tidigare studier. Framförallt handlar det om att riktlinjerna Ă€r otydliga och begrĂ€nsande, vilket i mĂ„nga fall leder till missvisande resultat. Det innebĂ€r att resultaten ska tolkas med försiktighet

    Climate Assessment of Vegetable Oil and Biodiesel from Camelina Grown as an Intermediate Crop in Cereal-Based Crop Rotations in Cold Climate Regions

    Get PDF
    The oilseed crop winter camelina (Camelina sativa) is attracting increasing interest for biofuel production. This study assessed the climate impacts of growing camelina as an intermediate crop in northern Europe (Sweden) for the production of vegetable oil and biofuel. Climate impacts were analyzed using life cycle assessment (LCA), while impacts on biodiversity and eutrophication were discussed. Three functional units were considered: 1 ha of land use, 1 kg of oil, and 1 MJ biofuel (hydrogenated vegetable oil, HVO). The results showed that dry matter yield over the whole crop rotation was higher in the camelina crop rotation, despite the lower yield of peas due to relay cropping with camelina. In the whole camelina crop rotation, fat production more than doubled, protein and fiber production marginally increased, and the production of carbohydrates decreased. Higher climate impacts related to field operations and fertilizer use in the camelina crop rotation, with associated N2O emissions, were compensated for by increased soil carbon accumulation due to the increased return of organic matter from the additional crop in the rotation. The total climate impact was around 0.5 kg CO2 eq/kg camelina oil when macronutrient allocation was used. The global warming potential was 15 g CO2 eq/MJ HVO, or 27 g CO2 eq/MJ HVO when soil organic carbon effects were not included, representing an 84% and 71% reduction, respectively, compared with fossil fuels

    Spatially differentiated midpoint indicator for marine eutrophication of waterborne emissions in Sweden

    Get PDF
    In life cycle assessment (LCA), eutrophication is commonly assessed using site-generic characterisation factors, despite being a site-dependent environmental impact. The purpose of this study was to improve the environmental relevance of marine eutrophication impact assessment in LCA, particularly regarding the impact assessment of waterborne nutrient emissions from Swedish agriculture.Characterisation factors were derived using site-dependent data on nutrient transport for all agricultural soils in Sweden, divided into 968 catchment areas, and considering the Baltic Sea, the receiving marine compartment, as both nitrogen- and phosphorus-limited. These new characterisation factors were then applied to waterborne nutrient emissions from typical grass ley and spring barley cultivation in all catchments.The site-dependent marine eutrophication characterisation factors obtained for nutrient leaching from soils varied between 0.056 and 0.986 kg N-eq/kg N and between 0 and 7.23 kg N-eq/kg P among sites in Sweden. On applying the new characterisation factors to spring barley and grass ley cultivation at different sites in Sweden, the total marine eutrophication impact from waterborne nutrient emissions for these crops varied by up to two orders of magnitude between sites. This variation shows that site plays an important role in determining the actual impact of an emission, which means that site-dependent impact assessment could provide valuable information to life cycle assessments and increase the relevance of LCA as a tool for assessment of product-related eutrophication impacts.Characterisation factors for marine eutrophication impact assessment at high spatial resolution, considering both the site-dependent fate of eutrophying compounds and specific nutrient limitations in the recipient waterbody, were developed for waterborne nutrient emissions from agriculture in Sweden. Application of the characterisation factors revealed variations in calculated impacts between sites in Sweden, highlighting the importance of spatial differentiation of characterisation modelling within the scale of the impact

    Life cycle assessment of fish oil substitute produced by microalgae using food waste

    Get PDF
    Fish oil has been used in conventional aquaculture for decades, despite the known links between increasing global demand for fish and depletion of natural resources and vital ecosystems (FAO, 2020, 2019). Alternative feed ingredients, including algae oil rich in docosahexaenoic acid (DHA), has therefore been increasingly used to substitute traditional fish oil. Heterotrophic algae cultivation in bioreactors can be supported by a primary carbon feedstock recovered from food waste, a solution that could reduce environmental impacts and support the transition towards circular food systems. This study used life cycle assessment to quantify environmental impact of DHA produced by the heterotrophic algae Crypthecodinium cohnii, using short-chain carboxylic acids derived from dark fermentation of food waste. The future potential of DHA from algae was evaluated by comparing the environmental impact to that of DHA from Peruvian anchovy oil. With respect to global warming, terrestrial acidification, freshwater eutrophication and land use, algae oil inferred -52 ton CO2eq, 3.5 ton SO2eq, -94 kg Peq, 2700 m2 eq, respectively per ton DHA. In comparison, the impact per ton DHA from fish oil was -15 ton CO2eq, 3.9 ton SO2eq, -97 kg Peq and 3200 m2 eq. Furthermore, algae oil showed lower climate impact compared to canola and linseed oil. By including Ecosystem damage as indicator for ecosystem quality at endpoint level, the important aspect of biodiversity impact was accounted for. Although the method primarily accounts for indirect effects on biodiversity, DHA from algae oil showed lower Ecosystem damage compared to fish oil even when future energy development, optimized production, increased energy demand and effects on biotic resources were considered via sensitivity analyses. As the results suggest, algae oil holds a promising potential for increased sustainability within aquaculture, provided that continued development and optimization of this emerging technology is enabled through active decision-making and purposeful investments

    Calculation of greenhouse gas emissions for cultivation of rapeseed for biodiesel production : Application of EU’s Renewable Energy Directive for alternative cultivation methods

    No full text
    Rapsmetylester (RME), Ă€ven kallat biodiesel, Ă€r ett biobrĂ€nsle som produceras av rapsolja. Trots att RME Ă€r förnybart Ă€r vĂ€xthusgasutslĂ€ppen i ett livscykelperspektiv inte försumbara, eftersom odlingen av raps ger upphov till utslĂ€pp. Jordbruket Ă€r en av Sveriges största kĂ€llor till klimatpĂ„verkande gaser. UtslĂ€ppen sker framförallt i form av den högpotenta Ă€xthusgasenlustgas som hĂ€rrör frĂ„n produktion och anvĂ€ndning av gödsel, men Ă€ven utslĂ€pp som beror pĂ„ anvĂ€ndning av fossila brĂ€nslen Ă€r signifikanta. År 2009 antogs EU-direktivet 2009/28/EG, som bland annat syftade till att sĂ€kerstĂ€lla de förnybara brĂ€nslenas klimatprestanda, det sĂ„ kallade förnybartdirektivet. I detta direktiv anges kriterier för att biodrivmedel och flytande biobrĂ€nslen ska fĂ„ klassas som förnybara, framförallt krav pĂ„ vĂ€xthusgasutslĂ€ppen i brĂ€nslets livscykel. Direktivet innefattar Ă€ven riktlinjer för hur dessa vĂ€xthusgasutslĂ€pp ska berĂ€knas. Kriterierna har inneburit ett incitament för att förbĂ€ttra klimatprestandan hos biobrĂ€nslen. För att minska sin klimatpĂ„verkan och beroende av fossila brĂ€nslen har tre gĂ„rdar i Östergötland Ă€ndrat sina odlingsmetoder. FörĂ€ndringarna innebĂ€r att dieseln för drift av jordbruksmaskiner och in- och uttransporter bytts ut mot biodiesel (RME), att torkningen av skörden nu sker med trĂ€dbrĂ€nslen istĂ€llet för olja, samt att en del av handelsgödseln ersatts av organiskt gödsel. GĂ„rdarna har sjĂ€lva myntat begreppet Östgötamodellen, som beskriver ett odlingssystem dĂ€r de fossila brĂ€nslena bytts ut mot förnybara, och ibland Ă€ven andra alternativa jordbruksmetoder tillĂ€mpas. Om den raps som odlas enligt Östgötamodellen sedan anvĂ€nds som rĂ„vara för biodieselproduktion pĂ„verkar det brĂ€nslets klimatprestanda. Syftet med denna studie Ă€r att berĂ€kna vĂ€xthusgasutslĂ€ppen frĂ„n odling av raps enligt Östgötamodellen, jĂ€mfört med konventionellt odlad raps. Eftersom rapsen ska anvĂ€ndas till att producera biodiesel har berĂ€kningarna gjorts genom att tillĂ€mpa riktlinjerna för berĂ€kning som anges i EU:s förnybartdirektiv. Metodiken som beskrivs har ett livscykelperspektiv, och kan beskrivas som en förenklad livscykelanalys. BerĂ€kningarna visar att byte av brĂ€nsle till förnybara alternativ ger en minskad klimatbelastning pĂ„ knappt 6 % i odlingsledet. Att ersĂ€tta drygt 20 % av handelsgödseln med slam gav drygt 30 % högre utslĂ€pp frĂ„n odlingen, medan reducerad jordbearbetning gav en nĂ„got lĂ€gre utslĂ€ppsreduktion Ă€n anvĂ€ndning av förnybara brĂ€nslen. Förutom utslĂ€ppen fĂ„r Ă€ven utslĂ€ppsbesparing rĂ€knas med för vissa Ă„tgĂ€rder som ger ökad kolinlagring i jorden och dĂ€rmed förhindrar utslĂ€pp av koldioxid. I denna studie har kolinlagring inkluderats för reducerad jordbearbetning, vilket gav en inlagring motsvarande 9051 g CO2eq/kg raps, jĂ€mfört med odlingsutslĂ€ppen 434 g CO2eq/kg raps. Denna stora inlagring Ă€r orimligt hög jĂ€mfört med tidigare studier. Dessutom visar tidigare studier att Ă€ven slam har en hög kolinlagringspotential, trots att slam för nĂ€rvarande inte tĂ€cks in av definitionerna i riktlinjerna för berĂ€kningen. Vidare konstateras att Östgötamodellen inte minskar lustgasutslĂ€ppen, som Ă€r de utslĂ€pp som kraftigt dominerar vĂ€xthusgasutslĂ€ppen frĂ„n rapsodlingen. Den enda möjligheten att minska de berĂ€knade lustgasutslĂ€ppen enligt den rekommenderade metoden Ă€r dock att minska mĂ€ngden applicerad kvĂ€vegödsel per mĂ€ngd raps, vilket begrĂ€nsar möjligheterna att tillgodorĂ€kna sig andra Ă„tgĂ€rder som minskar lustgasutslĂ€ppen. Förutom berĂ€kningsmetoderna för kolinlagring och lustgasutslĂ€pp sĂ„ synliggör denna rapport mĂ„nga av de problem som uppmĂ€rksammats i tidigare studier. Framförallt handlar det om att riktlinjerna Ă€r otydliga och begrĂ€nsande, vilket i mĂ„nga fall leder till missvisande resultat. Det innebĂ€r att resultaten ska tolkas med försiktighet

    Modelling site-dependent environmental impacts of nitrogen fertiliser use in life cycle assessments of crop cultivation

    Get PDF
    Use of mineral nitrogen fertilisers in crop cultivation has enabled substantial yield increases, strengthening global food security. High yields also allow better resource efficiency and result in higher organic matter inputs to soil, increasing the potential for soil carbon sequestration. However, nitrogen fertilisers cause substantial greenhouse gas emissions and nutrient losses to water bodies when the excess nitrogen leaves the field in reactive form. Thus nitrogen fertiliser can either increase or decrease the environmental impact of crop cultivation, depending on soil management, site characteristics and the aspects considered. Life cycle assessment (LCA) is a commonly used tool to assess the environmental impact of crop cultivation. In LCA, the impacts of all or part of the life cycle of a product, process or service are compiled. For crop cultivation, this generally includes production of inputs, machinery use and soil emissions. However, reactive nitrogen emissions, yield response and soil organic carbon dynamics are highly dependent on site conditions, relationships often poorly depicted in LCAs. This thesis examined the influence of nitrogen fertiliser rate and site on the climate impact and marine eutrophication of crop cultivation as determined by LCA. Methods for quantifying nitrogen emissions from crop cultivation and their impacts were compared, and new methods for assessing marine eutrophication impacts in Sweden and including soil fertility effects of yield increase were developed. The results showed that nitrogen fertiliser rate influenced the climate impact and marine eutrophication of crop cultivation, but that the effect of site was generally stronger. Site affected the two impact categories differently and also affected the nitrogen rate that gave the lowest impact. The level of impact and the effect of nitrogen rate and site also varied considerably with methodological choices, including: emissions models for soil nitrous oxide and nitrogen leaching, marine eutrophication characterisation model and accounting for the symbiotic relationship between yield and soil organic matter dynamics. These findings highlight the importance of careful model selection and interpretation of results when using LCA to assess the environmental impact of crop cultivation

    Assessing the climate and eutrophication impacts of grass cultivation at five sites in Sweden

    Get PDF
    In this study, Life Cycle Assessment (LCA) methodology was combined with the agro-ecosystem model DNDC to assess the climate and eutrophication impacts of perennial grass cultivation at five different sites in Sweden. The system was evaluated for two fertilisation rates, 140 and 200 kg N ha(-1). The climate impact showed large variation between the investigated sites. The largest contribution to the climate impact was through soil N2O emissions and emissions associated with mineral fertiliser manufacturing. The highest climate impact was predicted for the site with the highest clay and initial organic carbon content, while lower impacts were predicted for the sandy loam soils, due to low N2O emissions, and for the silty clay loam, due to high carbon sequestration rate. The highest eutrophication potential was estimated for the sandy loam soils, while the sites with finer soil texture had lower eutrophication potential. According to the results, soil properties and weather conditions were more important than fertilisation rate for the climate impact of the system assessed. It was concluded that agro-ecosystem models can add a spatial and temporal dimension to environmental impact assessment in agricultural LCA studies. The results could be used to assist policymakers in optimising use of agricultural land

    Higher carbon sequestration on Swedish dairy farms compared with other farm types as revealed by national soil inventories

    Get PDF
    Small changes in the large stock of soil organic carbon (SOC) can have a substantial influence on the climate impact of agriculture. We used information from a Swedish soil monitoring program, in combination with farm census data, to analyze decadal SOC concentrations and SOC stock changes on dairy farms compared with other farm types, and to quantify the climate impact of these changes on dairy farms. Soil monitoring data included topsoil samples from two inventories on 159 dairy farms, 86 beef farms, 318 arable farms, and 13 pig farms, taken at the same locations in 2001-2007 and 2011-2017. Concentrations of SOC on dairy farms (3.0%) were significantly higher than on arable farms (2.3%) and pig farms (2.4%), but not significantly different from beef farms (3.1%). SOC concentration was correlated with proportion of ley at farm scale. SOC stocks in the upper 20 cm increased significantly on dairy, beef, and arable farms, by 0.38, 0.14, and 0.21 Mg C ha(-1 )year(-1), respectively, between 2001-2007 and 2011-2017. For dairy farms, this corresponded to -1.4 Mg CO2 ha(-1) and approximately -0.22 kg CO2 kg(-1) energy-corrected milk, demonstrating that SOC changes could have a substantial influence on the climate footprint of milk

    Description of the AgrosfĂ€r model – a tool for the climate impact assessment of farms, crop and animal production systems in Sweden

    No full text
    The agricultural sector in Sweden needs to cut GHG emissions and contribute to the climate goal of net-zero emissions by 2045. The GHG reduction goal for agricultural emissions is not quantified, but the Swedish climate policy framework states that ‘Swedish food production shall increase as much as possible with as little climate impact as possible’. Multiple key actors within the sector of food and agriculture have developed roadmaps or industry specific goals for reducing GHG emissions from the sector. Consequently, requirements for transparent GHG accounting and reporting are increasing within the agricultural sector, both on a national and international level. The purpose of the AgrosfĂ€r tool is to establish an automatic data driven climate calculator used to calculate GHG emissions from agricultural products and on a farm enterprise level. Automation and automatic data collection will save time, increase the accuracy of the calculations, and simplify updates of the tool to keep it aligned with the most recent climate data and climate reporting methodology. It will make it possible to continuously carry out follow-ups on climate performance indicators and measure improvements from climate measures taken. A working group consisting of agricultural life cycle assessment experts has developed the framework of the tool (e.g., setting system boundaries, selecting methodologies and input data). A technical team has developed algorithms, a digital interface and coupled the tool to other existing agricultural databases, providing farm specific information on crop and animal production data, soil characteristics, carbon footprints and amounts of purchased inputs etc. The tool and user interface have been developed based on input from farmers through prototyping and in-depth interviews. The priority guidelines on which the calculation model is based are the Product Environmental Footprint Category Rules (PEFCR), the International Dairy Federation (IDF)’s approach for carbon footprint for the dairy sector, and FAO Livestock Environmental Assessment and Performance guidelines (FAO LEAP). From the farm perspective, the Greenhouse Gas Protocol (GHG Protocol) Corporate Standard, GHG Protocol Agricultural Guidance (Scope 1 &amp; 2) and GHG Protocol Corporate value chain (Scope 3) Accounting and Reporting Standard are guiding standards. Where standards have diverged or where assumptions have been required, the working group has made expert judgements on which method/guideline to follow or what assumptions to make. A first version of the tool, first described in report version 1, was developed as the basis for further development. The first version contains an animal and a crop module, and can calculate the carbon footprint of crops, milk and beef. This report (version 1.1) has been updated to include the most recent developments of the tool. The main change is that the tool can now also be used to calculate farm climate impact on a yearly basis. Future possibilities to develop the tool and calculation model are described in chapter 7, including suggestions for developing modules for more animal production types, deepening the integration between the crop and animal modules, expanding sources for automatic data collection, developing a carbon sequestration module, and other technical and methodological improvements to ensure alignment with important climate reporting standards. The report will be repeatedly updated as the tool develops, and new versions of the tool are released.AgrosfĂ€r is an EIP-Agri financed project aimed at developing a software solution that cancalculate climate footprints on a detailed level within primary food production inSwedish Agriculture. This report describes an updated version of the climate calculationmodel used in the software solution, AgrosfĂ€r. AgrosfĂ€r is based on automaticallygenerated data from the Agronod platform, which retrieves data from the farm's varioussystems. To some extent, data needs to be supplemented to AgrosfĂ€r to carry out aclimate calculation; this data is added directly to the tool. The goal of AgrosfĂ€r is tocalculate the carbon footprint of the farm and its products over time, enable benchmarksbetween similar farms, and visualize where climate-reduction activities will have thehighest effect.The calculation model team consisted of specialists from LantmĂ€nnen,HushĂ„llningssĂ€llskapet, VĂ€xa and RISE with support from a project manager and adata scientist who have worked with the first version of the model between November2021 and April 2022. The first model version was implemented in the AgrosfĂ€rsoftware and tested by farmers in 2022. The updated version was implemented in theAgrosfĂ€r software and tested by farmers in 2023. AgrosfĂ€r has developed and beendeployed to more users over time.Maria Berglund, HushĂ„llningssĂ€llskapet Halland, has primary responsibility for thecalculation model related to animal husbandry and manure management.Martin Laurentz, LantmĂ€nnen, has primary responsibility for the calculation modelrelated to crop production.The LCA-methodology of the updated report has been internally reviewed by DaniraBehaderovic and Serina Ahlgren at RISE, and the animal model has been reviewed byMikaela Lindberg at SLU.The AgrosfĂ€r climate calculation model has gone through a third-party revision,performed by Andreas Asker and Martyna Mikusinska, LCA experts at Sweco.AgrosfĂ€r is a product of Agronod; owned by VĂ€xa, LantmĂ€nnen, LRF,HushĂ„llningssĂ€llskapet, Arla and HKScan.</p
    corecore