2,125 research outputs found

    Buyer Perceptions of Supply Disruption Risk: A Behavioral View and Empirical Assessment

    Get PDF
    As supply chains become more complex, firms face increasing risks of supply disruptions. The process through which buyers make decisions in the face of these risks, however, has not been explored. Despite research highlighting the importance of behavioral approaches to risk, there is limited research that applies these views of risk in the supply chain literature. This paper addresses this gap by drawing on behavioral risk theory to investigate the causal relationships amongst situation, representations of risk, and decision-making within the purchasing domain. We operationalize and explore the relationship between three representations of supply disruption risk: magnitude of supply disruption, probability of supply disruption, and overall supply disruption risk. Additionally, we draw on exchange theories to identify product and market factors that impact buyers’ perceptions of the probability and magnitude of supply disruption. Finally, we look at how representations of risk affect the decision to seek alternative sources of supply. We test our model using data collected from 223 purchasing managers and buyers of direct materials. Our results show that both the probability and the magnitude of supply disruption are important to buyers’ overall perceptions of supply disruption risk. We also find that product and market situational factors impact perceptions of risk, but they are best understood through their impact on perceptions of probability and magnitude. Finally, we find that decisions are based on assessments of overall risk. These findings provide insight into the decision-making process and show that all three representations of risk are necessary for fully understanding risky decision-making with respect to supply disruptions

    Making Sense Of Supply Disruption Risk Research: A Conceptual Framework Grounded In Enactment Theory

    Get PDF
    The rich stream of supply disruption risk (SDR) literature incorporates several different theories and constructs across studies, but lacks a unifying decision-making framework. We review 79 SDR studies and advance a comprehensive framework, grounded in enactment theory, which integrates the disparate elements of SDR research and offers new insights into the SDR decision-making process. Enactment theory posits a three-stage, closed-loop process, consisting of enactment, selection and retention, through which individuals process and make sense of equivocal environments. We suggest that this sense-making process also underlies SDR decision-making, and provides the theoretical underpinnings for the environmental, organizational and individual factors that affect the formation of buyers\u27 perceptions of SDR and the actions they take to mitigate such risks. In accordance with our conceptual framework, we develop seven propositions that advance the social and psychological factors that drive the idiosyncratic nature of SDR decision-making

    Comparison of AMZIRC and GRCop-84

    Get PDF
    The mechanical properties of two copper alloys with high thermal conductivity, GRCop-84 and AMZIRC, were compared. These are competing alloys in high temperature, high heat flux applications such as rocket nozzles. The GRCop-84 data presented was taken from previous work. The results of new tensile, creep, and compression tests on AMZIRC are presented. Tests were done on as-received hard drawn material, and on material that had been subjected to a heat treatment designed to simulate a brazing operation at 935 C. As-received AMZIRC was found to have excellent properties at temperatures below 550 C, with room temperature yield and ultimate tensile strengths of about 500 MPa, and ductile failures. By comparison, GRCop-84 s room temperature tensile yield and ultimate strengths are about 200 and 380 MPa respectively. However, the simulated brazing heat treatment substantially decreased the mechanical properties of AMZIRC; and the strength of as-received AMZIRC dropped precipitously as test temperatures exceeded 500 C. The properties of GRCop-84 were not significantly affected by the 935 C heat treatment. As a result, there appear to be advantages to GRCop- 84 over AMZIRC if use or processing temperatures of greater than 500 C are expected. Tensile creep tests were done at 500 and 650 C. At these temperatures, the creep properties of GRCop-84 were superior to AMZIRC s. At equivalent rupture life and stress, GRCop-84 was found to have a 150 C temperature advantage over AMZIRC; for equivalent rupture life and temperature GRCop-84 was two times stronger

    Comparison of GRCop-84 to Other Cu Alloys with High Thermal Conductivities

    Get PDF
    The mechanical properties of six highly conductive copper alloys, GRCop-84, AMZIRC, GlidCop Al-15, Cu-1Cr-0.1Zr, Cu-0.9Cr, and NARloy-Z were compared. Tests were done on as-received hard drawn material, and after a heat treatment designed to simulate a brazing operation at 935 C. In the as-received condition AMZIRC, GlidCop Al-15, Cu- 1Cr-0.1Zr and Cu-0.9Cr had excellent strengths at temperatures below 500 C. However, the brazing heat treatment substantially decreased the mechanical properties of AMZIRC, Cu-1Cr-0.1Zr, Cu-0.9Cr, and NARloy-Z. The properties of GlidCop Al-15 and GRCop-84 were not significantly affected by the heat treatment. Thus there appear to be advantages to GRCop-84 over AMZIRC, Cu-1Cr-0.1Zr, Cu-0.9Cr, and NARloy-Z if use or processing temperatures greater than 500 C are expected. Ductility was lowest in GlidCop Al-15 and Cu-0.9Cr; reduction in area was particularly low in GlidCop Al-15 above 500 C, and as- received Cu-0.9Cr was brittle between 500 and 650 C. Tensile creep tests were done at 500 and 650 C; the creep properties of GRCop-84 were superior to those of brazed AMZIRC, Cu-1Cr- 0.1Zr, Cu-0.9Cr, and NARloy-Z. In the brazed condition, GRCop-84 was superior to the other alloys due to its greater strength and creep resistance (compared to AMZIRC, Cu-1Cr-0.1Zr, Cu-0.9Cr, and NARloy-Z) and ductility (compared to GlidCop Al-15)

    Comparison of GRCop-84 to Other High Thermal Conductive Cu Alloys

    Get PDF
    The mechanical properties of five copper alloys (GRCop-84, AMZIRC, GlidCop Al-15, Cu-1Cr-0.1Zr, Cu-0.9Cr) competing in high temperature, high heat flux applications such as rocket nozzles, were compared. Tensile, creep, thermal expansion, and compression tests are presented. Tests were done on as-received material, and on material which received a simulated brazing heat treatment at 935 C. The 935 C heat treatment weakened AMZIRC, Cu-1Cr-0.1Zr, and Cu-0.9Cr, and the strength of as-received AMZIRC dropped precipitously as test temperatures exceeded 500 C. The properties of GlidCop Al-15 and GRCop-84 were not significantly affected by the 935 C heat treatment. Thus GRCop-84 is better than AMZIRC, Cu-1Cr-0.1Zr, and Cu-0.9Cr at temperatures greater than 500 C. Ductility was lowest in GlidCop Al-15 and Cu-0.9Cr. The creep properties of GRCop-84 were superior to those of brazed AMZIRC, Cu-1Cr-0.1Zr, and Cu-0.9Cr. At equivalent rupture life and stress, GRCop-84 had a 150 C temperature advantage over brazed AMZIRC; for equivalent rupture life and temperature GRCop-84 was two times stronger. The advantages of GRCop-84 over GlidCop Al-15 associated with ease of processing were confirmed by GlidCop s marginal ductility. In the post brazed condition, GRCop-84 was found to be superior to the other alloys due to its greater strength and creep resistance (compared to AMZIRC, Cu-1Cr-0.1Zr, and Cu-0.9Cr) and ductility (compared to GlidCop Al-15

    The Evolution of the Optical and Near-Infrared Galaxy Luminosity Functions and Luminosity Densities to z~2

    Full text link
    Using Hubble Space Telescope and ground-based U through K- band photometry from the Great Observatories Origins Deep Survey (GOODS), we measure the evolution of the luminosity function and luminosity density in the rest-frame optical (UBR) to z ~ 2, bridging the poorly explored ``redshift desert'' between z~1 and z~2. We also use deep near-infrared observations to measure the evolution in the rest-frame J-band to z~1. Compared to local measurements from the SDSS, we find a brightening of the characteristic magnitude, (M*), by ~2.1, \~0.8 and ~0.7 mag between z=0.1 and z=1.9, in U, B, and R bands, respectively. The evolution of M* in the J-band is in the opposite sense, showing a dimming between redshifts z=0.4 and z=0.9. This is consistent with a scenario in which the mean star formation rate in galaxies was higher in the past, while the mean stellar mass was lower, in qualitative agreement with hierarchical galaxy formation models. We find that the shape of the luminosity function is strongly dependent on spectral type and that there is strong evolution with redshift in the relative contribution from the different spectral types to the luminosity density. We find good agreement in the luminosity function derived from an R-selected and a K-selected sample at z~1, suggesting that optically selected surveys of similar depth (R < 24) are not missing a significant fraction of objects at this redshift relative to a near-infrared-selected sample. We compare the rest-frame B-band luminosity functions from z~0--2 with the predictions of a semi-analytic hierarchical model of galaxy formation, and find qualitatively good agreement. In particular, the model predicts at least as many optically luminous galaxies at z~1--2 as are implied by our observations.Comment: 43 pages; 15 Figures; 5 Tables, Accepted for publication in Ap.

    Discovery of Two T Dwarf Companions with the Spitzer Space Telescope

    Get PDF
    We report the discovery of T dwarf companions to the nearby stars HN Peg (G0V, 18.4 pc, ~0.3 Gyr) and HD 3651 (K0V, 11.1 pc, ~7 Gyr). During an ongoing survey of 5'x5' fields surrounding stars in the solar neighborhood with IRAC aboard the Spitzer Space Telescope, we identified these companions as candidate T dwarfs based on their mid-IR colors. Using near-IR spectra obtained with SpeX at the NASA IRTF, we confirm the presence of methane absorption that characterizes T dwarfs and measure spectral types of T2.5+/-0.5 and T7.5+/-0.5 for HN Peg B and HD 3651 B, respectively. By comparing our Spitzer data to images from 2MASS obtained several years earlier, we find that the proper motions of HN Peg B and HD 3651 B are consistent with those of the primaries, confirming their companionship. HN Peg B and HD 3651 B have angular separations of 43.2" and 42.9" from their primaries, which correspond to projected physical separations of 795 and 476 AU, respectively. A comparison of their luminosities to the values predicted by theoretical evolutionary models implies masses of 0.021+/-0.009 and 0.051+/-0.014 Msun for HN Peg B and HD 3651 B. In addition, the models imply an effective temperature for HN Peg B that is significantly lower than the values derived for other T dwarfs at similar spectral types, which is the same behavior reported by Metchev & Hillenbrand for the young late-L dwarf HD 203030 B. Thus, the temperature of the L/T transition appears to depend on surface gravity. Meanwhile, HD 3651 B is the first substellar companion directly imaged around a star that is known to harbor a close-in planet from RV surveys. The discovery of this companion supports the notion that the high eccentricities of close-in planets like the one near HD 3651 may be the result of perturbations by low-mass companions at wide separations.Comment: Astrophysical Journal, in pres

    Electromagnetic field correlations near a surface with a nonlocal optical response

    Full text link
    The coherence length of the thermal electromagnetic field near a planar surface has a minimum value related to the nonlocal dielectric response of the material. We perform two model calculations of the electric energy density and the field's degree of spatial coherence. Above a polar crystal, the lattice constant gives the minimum coherence length. It also gives the upper limit to the near field energy density, cutting off its 1/z31/z^3 divergence. Near an electron plasma described by the semiclassical Lindhard dielectric function, the corresponding length scale is fixed by plasma screening to the Thomas-Fermi length. The electron mean free path, however, sets a larger scale where significant deviations from the local description are visible.Comment: 15 pages, 7 figure files (.eps), \documentclass[global]{svjour}, accepted in special issue "Optics on the Nanoscale" (Applied Physics B, eds. V. Shalaev and F. Tr\"ager

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Bright, single helicity, high harmonics driven by mid-infrared bicircular laser fields

    Get PDF
    [EN]High-harmonic generation (HHG) is a unique tabletop light source with femtosecond-to-attosecond pulse duration and tailorable polarization and beam shape. Here, we use counter-rotating femtosecond laser pulses of 0.8 µm and 2.0 μm to extend the photon energy range of circularly polarized high-harmonics and also generate single-helicity HHG spectra. By driving HHG in helium, we produce circularly polarized soft x-ray harmonics beyond 170 eV—the highest photon energy of circularly polarized HHG achieved to date. In an Ar medium, dense spectra at photon energies well beyond the Cooper minimum are generated, with regions composed of a single helicity—consistent with the generation of a train of circularly polarized attosecond pulses. Finally, we show theoretically that circularly polarized HHG photon energies can extend beyond the carbon K edge, extending the range of molecular and materials systems that can be accessed using dynamic HHG chiral spectro-microscopiesDepartment of Energy BES (DE-FG02-99ER14982); Air Force Office of Scientific Research (FA9550-16-1-0121); National Science Foundation (DGE-1144083, DGE-1650115); European Research Council (8511201); Ministerio de Ciencia, Innovación y Universidades (PID2019-106910GB-100); Junta de Castilla y León (SA287P18); Ramón y Cajal contract (RYC-2017-22745)
    corecore