2,347 research outputs found

    Probing jet properties via two particle correlation method

    Full text link
    The formulae for calculating jet fragmentation momentum, ,andpartontransversemomentum,, and parton transverse momentum, , and conditional yield are discussed in two particle correlation framework. Additional corrections are derived to account for the limited detector acceptance and inefficiency, for cases when the event mixing technique is used. The validity of our approach is confirmed with Monte-carlo simulation.Comment: Proceeding for HotQuarks2004 conference. 11 pages, 8 figures, corrected for typo

    The Evolution of the Optical and Near-Infrared Galaxy Luminosity Functions and Luminosity Densities to z~2

    Full text link
    Using Hubble Space Telescope and ground-based U through K- band photometry from the Great Observatories Origins Deep Survey (GOODS), we measure the evolution of the luminosity function and luminosity density in the rest-frame optical (UBR) to z ~ 2, bridging the poorly explored ``redshift desert'' between z~1 and z~2. We also use deep near-infrared observations to measure the evolution in the rest-frame J-band to z~1. Compared to local measurements from the SDSS, we find a brightening of the characteristic magnitude, (M*), by ~2.1, \~0.8 and ~0.7 mag between z=0.1 and z=1.9, in U, B, and R bands, respectively. The evolution of M* in the J-band is in the opposite sense, showing a dimming between redshifts z=0.4 and z=0.9. This is consistent with a scenario in which the mean star formation rate in galaxies was higher in the past, while the mean stellar mass was lower, in qualitative agreement with hierarchical galaxy formation models. We find that the shape of the luminosity function is strongly dependent on spectral type and that there is strong evolution with redshift in the relative contribution from the different spectral types to the luminosity density. We find good agreement in the luminosity function derived from an R-selected and a K-selected sample at z~1, suggesting that optically selected surveys of similar depth (R < 24) are not missing a significant fraction of objects at this redshift relative to a near-infrared-selected sample. We compare the rest-frame B-band luminosity functions from z~0--2 with the predictions of a semi-analytic hierarchical model of galaxy formation, and find qualitatively good agreement. In particular, the model predicts at least as many optically luminous galaxies at z~1--2 as are implied by our observations.Comment: 43 pages; 15 Figures; 5 Tables, Accepted for publication in Ap.

    Anhydrous polymeric zinc(II) penta­noate

    Get PDF
    The structure of the title compound, poly[di-μ-penta­noato-zinc(II)], [Zn{CH3(CH2)3COO}2]n, consists of a three-dimensional polymeric layered network with sheets parallel to the (100) plane, in which tetra­hedrally coordinated zinc(II) ions are connected by penta­noate bridges in a syn–anti arrangement. The hydro­carbon chains are in the fully extended all-trans conformation and are arranged in a tail-to-tail double bilayer

    The Young Lady\u27s Guide

    Get PDF
    Contents Papers for thoughtful girls, by Sarah Tytler. A woman’s thoughts about women, by the author of John Halifax, gentleman . Fashion, from Mrs. Sydney Cox’s Friendly counsel for girls . Novel-reading, from the Greyson letters, by Henry Rogers. From Daughters and Women of England, by Sarah S. Ellis. From Hannah More.--From The young ladies’ mentor , by a lady. The social position and culture due to woman, by W. R. Williams.--Education of the heart, woman’s best, by Sarah S. Ellis. From The young woman’s friend , by J. A. James

    Discovery of Two T Dwarf Companions with the Spitzer Space Telescope

    Get PDF
    We report the discovery of T dwarf companions to the nearby stars HN Peg (G0V, 18.4 pc, ~0.3 Gyr) and HD 3651 (K0V, 11.1 pc, ~7 Gyr). During an ongoing survey of 5'x5' fields surrounding stars in the solar neighborhood with IRAC aboard the Spitzer Space Telescope, we identified these companions as candidate T dwarfs based on their mid-IR colors. Using near-IR spectra obtained with SpeX at the NASA IRTF, we confirm the presence of methane absorption that characterizes T dwarfs and measure spectral types of T2.5+/-0.5 and T7.5+/-0.5 for HN Peg B and HD 3651 B, respectively. By comparing our Spitzer data to images from 2MASS obtained several years earlier, we find that the proper motions of HN Peg B and HD 3651 B are consistent with those of the primaries, confirming their companionship. HN Peg B and HD 3651 B have angular separations of 43.2" and 42.9" from their primaries, which correspond to projected physical separations of 795 and 476 AU, respectively. A comparison of their luminosities to the values predicted by theoretical evolutionary models implies masses of 0.021+/-0.009 and 0.051+/-0.014 Msun for HN Peg B and HD 3651 B. In addition, the models imply an effective temperature for HN Peg B that is significantly lower than the values derived for other T dwarfs at similar spectral types, which is the same behavior reported by Metchev & Hillenbrand for the young late-L dwarf HD 203030 B. Thus, the temperature of the L/T transition appears to depend on surface gravity. Meanwhile, HD 3651 B is the first substellar companion directly imaged around a star that is known to harbor a close-in planet from RV surveys. The discovery of this companion supports the notion that the high eccentricities of close-in planets like the one near HD 3651 may be the result of perturbations by low-mass companions at wide separations.Comment: Astrophysical Journal, in pres

    The Ratio of W + N jets To Z/gamma + N jets As a Precision Test of the Standard Model

    Full text link
    We suggest replacing measurements of the individual cross-sections for the production of W + N jets and Z/gamma + N jets in searches for new high-energy phenomena at hadron colliders by the precision measurement of the ratios (W+0 jet)/(Z+0 jet), (W+1 jet)/(Z+1 jet), (W+2 jets)/(Z+2 jets),... (W+N jets)/(Z+N jets), with N as large as 6 (the number of jets in ttbarH). These ratios can also be formed for the case where one or more of the jets is tagged as a b or c quark. Existing measurements of the individual cross sections for Wenu + N jets at the Tevatron have systematic uncertainties that grow rapidly with N, being dominated by uncertainties in the identification of jets and the jet energy scale. These systematics, and also those associated with the luminosity, parton distribution functions (PDF's), detector acceptance and efficiencies, and systematics of jet finding and b-tagging, are expected to substantially cancel in calculating the ratio of W to Z production in each N-jet channel, allowing a greater sensitivity to new contributions in these channels in Run II at the Tevatron and at the LHC.Comment: 10 pages, 8 figures, added reference

    Double Inflation in Supergravity and the Large Scale Structure

    Full text link
    The cosmological implication of a double inflation model with hybrid + new inflations in supergravity is studied. The hybrid inflation drives an inflaton for new inflation close to the origin through supergravity effects and new inflation naturally occurs. If the total e-fold number of new inflation is smaller than 60\sim 60, both inflations produce cosmologically relevant density fluctuations. Both cluster abundances and galaxy distributions provide strong constraints on the parameters in the double inflation model assuming Ω0=1\Omega_0=1 standard cold dark matter scenario. The future satellite experiments to measure the angular power spectrum of the cosmic microwave background will make a precise determination of the model parameters possible.Comment: 19 pages (RevTeX file

    Test of CPT Symmetry and Quantum Mechanics with Experimental data from CPLEAR

    Full text link
    We use fits to recent published CPLEAR data on neutral kaon decays to π+π\pi^+\pi^- and πeν\pi e\nu to constrain the CPT--violation parameters appearing in a formulation of the neutral kaon system as an open quantum-mechanical system. The obtained upper limits of the CPT--violation parameters are approaching the range suggested by certain ideas concerning quantum gravity.Comment: 9 pages of uuencoded postscript (includes 3 figures

    Testing String Theory with CMB

    Full text link
    Future detection/non-detection of tensor modes from inflation in CMB observations presents a unique way to test certain features of string theory. Current limit on the ratio of tensor to scalar perturbations, r=T/S, is r < 0.3, future detection may take place for r > 10^{-2}-10^{-3}. At present all known string theory inflation models predict tensor modes well below the level of detection. Therefore a possible experimental discovery of tensor modes may present a challenge to string cosmology. The strongest bound on r in string inflation follows from the observation that in most of the models based on the KKLT construction, the value of the Hubble constant H during inflation must be smaller than the gravitino mass. For the gravitino mass in the usual range, m_{3/2} < O(1) TeV, this leads to an extremely strong bound r < 10^{-24}. A discovery of tensor perturbations with r > 10^{-3} would imply that the gravitinos in this class of models are superheavy, m_{3/2} > 10^{13} GeV. This would have important implications for particle phenomenology based on string theory.Comment: 13 pages, 2 figure

    Tests of the Equivalence Principle with Neutral Kaons

    Get PDF
    We test the Principle of Equivalence for particles and antiparticles, using CPLEAR data on tagged K0 and K0bar decays into pi^+ pi^-. For the first time, we search for possible annual, monthly and diurnal modulations of the observables |eta_{+-}| and phi_{+-}, that could be correlated with variations in astrophysical potentials. Within the accuracy of CPLEAR, the measured values of |eta_{+-}| and phi_{+-} are found not to be correlated with changes of the gravitational potential. We analyze data assuming effective scalar, vector and tensor interactions, and we conclude that the Principle of Equivalence between particles and antiparticles holds to a level of 6.5, 4.3 and 1.8 x 10^{-9}, respectively, for scalar, vector and tensor potentials originating from the Sun with a range much greater than the distance Earth-Sun. We also study energy-dependent effects that might arise from vector or tensor interactions. Finally, we compile upper limits on the gravitational coupling difference between K0 and K0bar as a function of the scalar, vector and tensor interaction range.Comment: 15 pages latex 2e, five figures, one style file (cernart.csl) incorporate
    corecore