3,761 research outputs found

    CLNet: A Compact Latent Network for Fast Adjusting Siamese Trackers

    Get PDF
    © 2020, Springer Nature Switzerland AG. In this paper, we provide a deep analysis for Siamese-based trackers and find that the one core reason for their failure on challenging cases can be attributed to the problem of decisive samples missing during offline training. Furthermore, we notice that the samples given in the first frame can be viewed as the decisive samples for the sequence since they contain rich sequence-specific information. To make full use of these sequence-specific samples, we propose a compact latent network to quickly adjust the tracking model to adapt to new scenes. A statistic-based compact latent feature is proposed to efficiently capture the sequence-specific information for the fast adjustment. In addition, we design a new training approach based on a diverse sample mining strategy to further improve the discrimination ability of our compact latent network. To evaluate the effectiveness of our method, we apply it to adjust a recent state-of-the-art tracker, SiamRPN++. Extensive experimental results on five recent benchmarks demonstrate that the adjusted tracker achieves promising improvement in terms of tracking accuracy, with almost the same speed. The code and models are available at https://github.com/xingpingdong/CLNet-tracking

    Photoluminescence investigations of 2D hole Landau levels in p-type single Al_{x}Ga_{1-x}As/GaAs heterostructures

    Full text link
    We study the energy structure of two-dimensional holes in p-type single Al_{1-x}Ga_{x}As/GaAs heterojunctions under a perpendicular magnetic field. Photoluminescence measurments with low densities of excitation power reveal rich spectra containing both free and bound-carrier transitions. The experimental results are compared with energies of valence-subband Landau levels calculated using a new numerical procedure and a good agreement is achieved. Additional lines observed in the energy range of free-carrier recombinations are attributed to excitonic transitions. We also consider the role of many-body effects in photoluminescence spectra.Comment: 13 pages, 10 figures, accepted to Physical Review

    Boson Stars in General Scalar-Tensor Gravitation: Equilibrium Configurations

    Get PDF
    We study equilibrium configurations of boson stars in the framework of general scalar-tensor theories of gravitation. We analyse several possible couplings, with acceptable weak field limit and, when known, nucleosynthesis bounds, in order to work in the cosmologically more realistic cases of this kind of theories. We found that for general scalar-tensor gravitation, the range of masses boson stars might have is comparable with the general relativistic case. We also analyse the possible formation of boson stars along different eras of cosmic evolution, allowing for the effective gravitational constant far out form the star to deviate from its current value. In these cases, we found that the boson stars masses are sensitive to this kind of variations, within a typical few percent. We also study cases in which the coupling is implicitly defined, through the dependence on the radial coordinate, allowing it to have significant variations in the radius of the structure.Comment: 19 pages in latex, 3 figures -postscript- may be sent via e-mail upon reques

    Slabs of stabilized jellium: Quantum-size and self-compression effects

    Get PDF
    We examine thin films of two simple metals (aluminum and lithium) in the stabilized jellium model, a modification of the regular jellium model in which a constant potential is added inside the metal to stabilize the system for a given background density. We investigate quantum-size effects on the surface energy and the work function. For a given film thickness we also evaluate the density yielding energy stability, which is found to be slightly higher than the equilibrium density of the bulk system and to approach this value in the limit of thick slabs. A comparison of our self-consistent calculations with the predictions of the liquid-drop model shows the validity of this model.Comment: 7 pages, 6 figures, to appear in Phys. Rev.

    How and where to find NPS users: a cross national survey among current users of new psychoactive substances.

    Get PDF
    Use of new psychoactive substances (NPS) across Europe remains a public health challenge. The study describes potentials and limitations of methods in a transnational survey of recent marginalized, nightlife and online community NPS users in Germany, Hungary, Ireland, the Netherlands, Poland and Portugal (n=3023). In terms of demographic profile, drug use history and type of NPS, different methods reached different segments of the NPS-using population. Last year use of different NPS varied across countries and groups. Respondents used NPS in a variety of settings, with public spaces most common in marginalized group. The study suggests that prevalence rates can reveal a picture of the NPS market that significantly deviates from what law enforcement seizures indicate. Outreach in nightlife settings and peer education are recommended to inform users about health risks and to improve access to drug services and care

    Antimicrobial and cell-penetrating peptides induce lipid vesicle fusion by folding and aggregation

    Get PDF
    According to their distinct biological functions, membrane-active peptides are generally classified as antimicrobial (AMP), cell-penetrating (CPP), or fusion peptides (FP). The former two classes are known to have some structural and physicochemical similarities, but fusogenic peptides tend to have rather different features and sequences. Nevertheless, we found that many CPPs and some AMPs exhibit a pronounced fusogenic activity, as measured by a lipid mixing assay with vesicles composed of typical eukaryotic lipids. Compared to the HIV fusion peptide (FP23) as a representative standard, all designer-made peptides showed much higher lipid-mixing activities (MSI-103, MAP, transportan, penetratin, Pep1). Native sequences, on the other hand, were less fusogenic (magainin 2, PGLa, gramicidin S), and pre-aggregated ones were inactive (alamethicin, SAP). The peptide structures were characterized by circular dichroism before and after interacting with the lipid vesicles. A striking correlation between the extent of conformational change and the respective fusion activities was found for the series of peptides investigated here. At the same time, the CD data show that lipid mixing can be triggered by any type of conformation acquired upon binding, whether α-helical, β-stranded, or other. These observations suggest that lipid vesicle fusion can simply be driven by the energy released upon membrane binding, peptide folding, and possibly further aggregation. This comparative study of AMPs, CPPs, and FPs emphasizes the multifunctional aspects of membrane-active peptides, and it suggests that the origin of a peptide (native sequence or designer-made) may be more relevant to define its functional range than any given name

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Physics at a 100 TeV pp collider: beyond the Standard Model phenomena

    Full text link
    This report summarises the physics opportunities in the search and study of physics beyond the Standard Model at a 100 TeV pp collider.Comment: 196 pages, 114 figures. Chapter 3 of the "Physics at the FCC-hh" Repor

    Αβ Hinders Nuclear Targeting of AICD and Fe65 in Primary Neuronal Cultures

    Get PDF
    The intracellular domain of the Alzheimer’s amyloid precursor protein (AICD) has been described as an important player in the transactivation of specific genes. It results from proteolytic processing of the Alzheimer’s amyloid precursor protein (APP), as does the neurotoxic Aβ peptide. Although normally produced in cells, Aβ is typically considered to be a neurotoxic peptide, causing devastating effects. By exposing primary neuronal cultures to relatively low Aβ concentrations, this peptide was shown to affect APP processing. Our findings indicate that APP C-terminal fragments are increased with concomitant reduction in the expression levels of APP itself. AICD nuclear immunoreactivity detected under control conditions was dramatically reduced in response to Aβ exposure. Additionally, intracellular protein levels of Fe65 and GSK3 were also decreased in response to Aβ. APP nuclear signaling is altered by Aβ, affecting not only AICD production but also its nuclear translocation and complex formation with Fe65. In effect, Aβ can trigger a physiological negative feedback mechanism that modulates its own production
    corecore