109 research outputs found

    Crystal chemistry of spinels in the system MgAl2O4-MgV2O4-Mg2VO4

    Get PDF
    Eight spinel single-crystal samples belonging to the spinel sensu stricto-magnesiocoulsonite series (MgAl2O4-MgV2O4) were synthesized and crystal-chemically characterized by X‑ray diffraction, electron microprobe and optical absorption spectroscopy. Site populations show that the tetrahedrally coordinated site (T) is populated by Mg and minor Al for the spinel sensu stricto compositions, and only by Mg for the magnesiocoulsonite compositions, while the octahedrally coordinated site (M) is populated by Al, V3+, minor Mg, and very minor amounts of V4+. The latter occurs in appreciable amounts in the Al-free magnesium vanadate spinel, T(Mg)M(Mg0.26V3+1.48V4+0.26)O4, showing the presence of the inverse spinel VMg2O4. The studied samples are characterized by substitution of Al3+ for V3+ and (Mg2++V4+) for 2V3+ described in the system MgAl2O4-MgV2O4-VMg2O4. The present data in conjunction with data from the literature provide a basis for quantitative analyses of two solid-solution series MgAl2O4-MgV23+O4 and MgV23+O4-V4+Mg2O4. Unit-cell parameter increases with increasing V3+ along the series MgAl2O4-MgV2O4 (8.085–8.432 Å), but only slightly increases with increasing V3+ along the series VMg2O4-MgV2O4 (8.386–8.432 Å). Although a solid solution could be expected between the MgAl2O4 and VMg2O4 end-members, no evidence was found. Amounts of V4+ are nearly insignificant in all synthetic Al-bearing vanadate spinels, but are appreciable in Al-free vanadate spinel. An interesting observation of the present study is that despite the observed complete solid-solution along the MgAl2O4-MgV2O4 and MgV2O4-VMg2O4 series, the spinel structure seems to be unable to stabilize V4+ in any intermediate members on the MgAl2O4-Mg2VO4 join even at high oxygen fugacities. This behavior indicates that the accommodation of specific V-valences can be strongly influenced by crystal-structural constraints, and any evaluation of oxygen fugacities during mineral formation based exclusively on V cation valence distributions in spinel should be treated with caution. The present study underlines that the V valency distribution in spinels is not exclusively reflecting oxygen fugacities, but also depends on activities and solubilities of all chemical components in the crystallization environment

    HT breakdown of Mn-bearing elbaite from the Anjanabonoina pegmatite, Madagascar

    Get PDF
    The thermal behavior of a gem-quality purplish-red Mn-bearing elbaite from the Anjanabonoina pegmatite, Madagascar, with composition X(Na0.41□0.35Ca0.24)Σ1.00 Y(Al1.81Li1.00Fe3+ 0.04Mn3+ 0.02Mn2+ 0.12Ti0.004)Σ3.00 ZAl6[T(Si5.60B0.40)Σ6.00O18](BO3)3(OH)3 W[(OH)0.50F0.13O0.37]Σ1.00 was investigated using both in situ High-Temperature X-Ray powder diffraction (HT-pXRD) and ex situ X-Ray single-crystal diffraction (SC-XRD) on two single crystals previously heated in the air up to 750 and 850 °C. The first occurrence of mullite diffraction peaks allowed us to constrain the breakdown temperature of Mnbearing elbaite at ambient pressure, at 825 °C. The breakdown products from the HT-pXRD experiments were cooled down to ambient temperature and identified via pXRD, represented by B-mullite and γ-LiAlSi2O6. A thermally induced oxidation of Mn2+ to Mn3+ was observed with both in-situ and ex-situ techniques; it started at 470 °C and is assumed to be counterbalanced by deprotonation, according to the equation: Mn2+ + (OH)– → Mn3+ + O2– + 1/2H2. At temperatures higher than 752 °C, a partial disorder between the Y and Z sites is observed from unit-cell parameters and mean bond distances, possibly caused by the inter-site exchange mechanism YLi + ZAl → ZLi + YAl

    Blue-growth zones caused by Fe2+ in tourmaline crystals from the San Piero in Campo gem-bearing pegmatites, Elba Island, Italy

    Get PDF
    Two tourmaline crystals with a blue growth zone at the analogous pole, respectively from the San Silvestro and the Fucili pegmatites, located in the San Piero in Campo village, Elba Island (Tyrrhenian Sea, Italy), have been described for the first time using compositional and spectroscopic data to define their crystal-chemical aspects and the causes of the colour. Compositional data obtained by electron microprobe analysis indicate that both tourmalines belong to the elbaite–fluor-elbaite series. The upper part of each crystal is characterised by an increased amount of Fe (FeO up to ~1 wt.%) and a Ti content below the detection limit. Optical absorption spectra recorded on the blue zone of both samples show absorption bands caused by spin-allowed d-d transitions in [6]-coordinated Fe2+, and no intervalence charge transfer Fe2+-Ti interactions, indicating that Fe2+ is the only chromophore. Mössbauer analysis of the blue zone of the Fucili sample confirmed the Fe2+ oxidation state, implying that the redox conditions in the crystallisation environment were relatively reducing. The presence of colour changes at the analogous termination during tourmaline crystal growth suggests a change in the composition of the crystallisation environment, probably associated with a partial opening of the system

    Emplacement and segment geometry of large, high-viscosity magmatic sheets

    Get PDF
    This project and Tobias Schmiedel are funded by the Knut and Alice Wallenberg Foundation through a Wallenberg Academy Fellow grant to Steffi Burchardt (grant No. KAW 2017.0153).Understanding magma transport in sheet intrusions is crucial to interpreting volcanic unrest. Studies of dyke emplacement and geometry focus predominantly on low-viscosity, mafic dykes. Here, we present an in-depth study of two high-viscosity dykes (106 Pa·s) in the Chachahuén volcano, Argentina, the Great Dyke and the Sosa Dyke. To quantify dyke geometries, magma flow indicators, and magma viscosity, we combine photogrammetry, microstructural analysis, igneous petrology, Fourier-Transform-Infrared-Spectroscopy, and Anisotropy of Magnetic Susceptibility (AMS). Our results show that the dykes consist of 3 to 8 mappable segments up to 2 km long. Segments often end in a bifurcation, and segment tips are predominantly oval, but elliptical tips occur in the outermost segments of the Great Dyke. Furthermore, variations in host rocks have no observable impact on dyke geometry. AMS fabrics and other flow indicators in the Sosa Dyke show lateral magma flow in contrast to the vertical flow suggested by the segment geometries. A comparison with segment geometries of low-viscosity dykes shows that our high-viscosity dykes follow the same geometrical trend. In fact, the data compilation supports that dyke segment and tip geometries reflect different stages in dyke emplacement, questioning the current usage for final sheet geometries as proxies for emplacement mechanism.Publisher PDFPeer reviewe

    Chemical and structural characterization of UICC amosite fibres from Penge mine (South Africa)

    Get PDF
    In the present work we report the full structural and spectroscopic characterization of an UICC amosite (fibrous gnmerite) standard sample from Penge mine (South Africa). The chemical composition was obtained by SEM-EDS and cation site partition was retrieved by complementing chemical, Mossbauer and X-ray powder diffraction data. Cell parameters, fractional coordinates, and site scattering for M(1), M(2), M(3), M(4) were refined using the Rietveld method. The retrieved crystal chemical formula (A)[Na-0.02](Sigma 0.02)(B)(Fe1.542+Mn0.29Na0.10Ca0.07)Sigma(C)(2.00)(Fe2.922+Mg1.93Fe0.153+)(Sigma 5.00)(T)(Si7.93Al0.07)(Sigma 8.00) O-22.00 (W)(OH2.00)(Sigma 2.00) is in reasonable agreement with reference data.Rietveld refinement results evidenced that Fe2+ is allocated in the octahedral layer following the site preferencesM(1)approximate to M(3)>M(2), whereas Mg preferentially is ordered at M(2). Refined cell parameters are: a=9.55264(17) angstrom, b=18.3069(3) angstrom, c=5.33487(8) angstrom, beta= 101 .840(3)degrees, V=913.11(3) angstrom(3). Quantitative Phase Analysis indicates about 10 wt.% of accessory phases including quartz, ankerite and minor stilpnomelane and biotite/annite. Obtained results are the basis for further studies aimed at investigating possible correlation between physico-chemical features of the fibres and their chemical reactivity and toxicity

    Modes of carbon fixation in an arsenic and CO<sub>2</sub>-rich shallow hydrothermal ecosystem

    Get PDF
    Abstract The seafloor sediments of Spathi Bay, Milos Island, Greece, are part of the largest arsenic-CO2-rich shallow submarine hydrothermal ecosystem on Earth. Here, white and brown deposits cap chemically distinct sediments with varying hydrothermal influence. All sediments contain abundant genes for autotrophic carbon fixation used in the Calvin-Benson-Bassham (CBB) and reverse tricaboxylic acid (rTCA) cycles. Both forms of RuBisCO, together with ATP citrate lyase genes in the rTCA cycle, increase with distance from the active hydrothermal centres and decrease with sediment depth. Clustering of RuBisCO Form II with a highly prevalent Zetaproteobacteria 16S rRNA gene density infers that iron-oxidizing bacteria contribute significantly to the sediment CBB cycle gene content. Three clusters form from different microbial guilds, each one encompassing one gene involved in CO2 fixation, aside from sulfate reduction. Our study suggests that the microbially mediated CBB cycle drives carbon fixation in the Spathi Bay sediments that are characterized by diffuse hydrothermal activity, high CO2, As emissions and chemically reduced fluids. This study highlights the breadth of conditions influencing the biogeochemistry in shallow CO2-rich hydrothermal systems and the importance of coupling highly specific process indicators to elucidate the complexity of carbon cycling in these ecosystems

    From field analysis to nanostructural investigation. A multidisciplinary approach to describe natural occurrence of asbestos in view of hazard assessment

    Get PDF
    The environmental impact of natural occurrences of asbestos (NOA) and asbestos-like minerals is a growing concern for environmental protection agencies. The lack of shared sampling and analytical procedures hinders effectively addressing this issue. To investigate the hazard posed by NOA, a multidisciplinary approach that encompasses geology, mineralogy, chemistry, and toxicology is proposed and demonstrated here, on a natural occurrence of antigorite from a site in Varenna Valley, Italy. Antigorite is, together with chrysotile asbestos, one of the serpentine polymorphs and its toxicological profile is still under debate. We described field and petrographic analyses required to sample a vein and to evaluate the NOA-hazard. A combination of standardized mechanical stress and automated morphometrical analyses on milled samples allowed to quantify the asbestoslike morphology. The low congruent solubility in acidic simulated body fluid, together with the toxicity-relevant surface reactivity due to iron speciation, signalled a bio-activity similar or even greater to that of chrysotile. Structural information on the genetic mechanism of antigorite asbestos-like fibres in nature were provided. Overall, the NOA site was reported to contain veins of asbestos-like antigorite and should be regarded as source of potentially toxic fibres during hazard assessment procedure
    • …
    corecore