5 research outputs found

    Solitons on H-bonds in proteins

    Full text link
    A model for soliton dynamics on a hydrogen-bond network in helical proteins is proposed. It employs in three dimensions the formalism of fully integrable Toda lattices which admits phonons as well as solitons along the hydrogen-bonds of the helices. A simulation of the three dimensional Toda lattice system shows that the solitons are spontaneously created and are stable and moving along the helix axis. A perturbation on one of the three H-bond lines forms solitons on the other H-bonds as well. The robust solitary wave may explain very long-lived modes in the frequency range of 100 cm1^{-1} which are found in recent X-ray laser experiments. The dynamics parameters of the Toda lattice are in accordance with the usual Lennard-Jones parameters used for realistic H-bond potentials in proteins.Comment: 6 pages, 7 figure

    Analytical tools for solitons and periodic waves corresponding to phonons on Lennard-Jones lattices in helical proteins

    Get PDF
    9 pages, 13 figures.-- PACS nrs.: 05.45.Yv, 87.15.-v.-- PMID: 15783440 [PubMed].We study the propagation of solitons along the hydrogen bonds of an alpha helix. Modeling the hydrogen and peptide bonds with Lennard-Jones potentials, we show that the solitons can appear spontaneously and have long lifetimes. Remarkably, even if no explicit solution is known for the Lennard-Jones potential, the solitons can be characterized analytically with a good quantitative agreement using formulas for a Toda potential with parameters fitted to the Lennard-Jones potential. We also discuss and show the robustness of the family of periodic solutions called cnoidal waves, corresponding to phonons. The soliton phenomena described in the simulations of alpha helices may help to explain recent x-ray experiments on long alpha helices in Rhodopsin where a long lifetime of the vibrational modes has been observed.Peer reviewe

    Literatur

    No full text
    corecore