1,793 research outputs found

    Experimental evaluation of CTD package hydrodynamic behavior and recommendations for improved lowering techniques

    Get PDF
    This report is the last of a series of three reports on a comprehensive study of CTD instrument lowering mechanics. The first report, WHOI 79-81, "A Study of CTD Cables and Lowering Systems", examines the causes and modes of lowering cable failures, both mechanical and electrical, and makes recommendations to improve existing instrument packages and lowering procedures. The second report, WHOI 81-76, "Hydrodynamics of CTD Instrument Packages", is a theoretical study of instrument package stability when cable lowered or free falling. The model is used to predict the hydrodynamic response of CTD packages in their present or improved configuration. This report, WHOI 83-21, is more factual. It describes the tests performed on scale models and actual CTD packages to actually observe and/or measure their hydrodynamic behavior. Analytical results and experimental data obtained in this study are used to draw recommendations for CTD package improvement and future lowering procedures.Prepared for the Office of Naval Research under Contract N00014-72-C-0019

    Ischemia and reperfusion injury in kidney transplantation : relevant mechanisms in injury and repair

    Get PDF
    Ischemia and reperfusion injury (IRI) is a complex pathophysiological phenomenon, inevitable in kidney transplantation and one of the most important mechanisms for non- or delayed function immediately after transplantation. Long term, it is associated with acute rejection and chronic graft dysfunction due to interstitial fibrosis and tubular atrophy. Recently, more insight has been gained in the underlying molecular pathways and signalling cascades involved, which opens the door to new therapeutic opportunities aiming to reduce IRI and improve graft survival. This review systemically discusses the specific molecular pathways involved in the pathophysiology of IRI and highlights new therapeutic strategies targeting these pathways

    Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter's great red spot

    Full text link
    We introduce a new set of generalized Fokker-Planck equations that conserve energy and mass and increase a generalized entropy until a maximum entropy state is reached. The concept of generalized entropies is rigorously justified for continuous Hamiltonian systems undergoing violent relaxation. Tsallis entropies are just a special case of this generalized thermodynamics. Application of these results to stellar dynamics, vortex dynamics and Jupiter's great red spot are proposed. Our prime result is a novel relaxation equation that should offer an easily implementable parametrization of geophysical turbulence. This relaxation equation depends on a single key parameter related to the skewness of the fine-grained vorticity distribution. Usual parametrizations (including a single turbulent viscosity) correspond to the infinite temperature limit of our model. They forget a fundamental systematic drift that acts against diffusion as in Brownian theory. Our generalized Fokker-Planck equations may have applications in other fields of physics such as chemotaxis for bacterial populations. We propose the idea of a classification of generalized entropies in classes of equivalence and provide an aesthetic connexion between topics (vortices, stars, bacteries,...) which were previously disconnected.Comment: Submitted to Phys. Rev.

    Scaling laws and vortex profiles in 2D decaying turbulence

    Full text link
    We use high resolution numerical simulations over several hundred of turnover times to study the influence of small scale dissipation onto vortex statistics in 2D decaying turbulence. A self-similar scaling regime is detected when the scaling laws are expressed in units of mean vorticity and integral scale, as predicted by Carnevale et al., and it is observed that viscous effects spoil this scaling regime. This scaling regime shows some trends toward that of the Kirchhoff model, for which a recent theory predicts a decay exponent Îľ=1\xi=1. In terms of scaled variables, the vortices have a similar profile close to a Fermi-Dirac distribution.Comment: 4 Latex pages and 4 figures. Submitted to Phys. Rev. Let

    Thermodynamics and collapse of self-gravitating Brownian particles in D dimensions

    Full text link
    We address the thermodynamics (equilibrium density profiles, phase diagram, instability analysis...) and the collapse of a self-gravitating gas of Brownian particles in D dimensions, in both canonical and microcanonical ensembles. In the canonical ensemble, we derive the analytic form of the density scaling profile which decays as f(x)=x^{-\alpha}, with alpha=2. In the microcanonical ensemble, we show that f decays as f(x)=x^{-\alpha_{max}}, where \alpha_{max} is a non-trivial exponent. We derive exact expansions for alpha_{max} and f in the limit of large D. Finally, we solve the problem in D=2, which displays rather rich and peculiar features

    Phase transitions in self-gravitating systems. Self-gravitating fermions and hard spheres models

    Full text link
    We discuss the nature of phase transitions in self-gravitating systems both in the microcanonical and in the canonical ensemble. We avoid the divergence of the gravitational potential at short distances by considering the case of self-gravitating fermions and hard spheres models. Three kinds of phase transitions (of zeroth, first and second order) are evidenced. They separate a ``gaseous'' phase with a smoothly varying distribution of matter from a ``condensed'' phase with a core-halo structure. We propose a simple analytical model to describe these phase transitions. We determine the value of energy (in the microcanonical ensemble) and temperature (in the canonical ensemble) at the transition point and we study their dependance with the degeneracy parameter (for fermions) or with the size of the particles (for a hard spheres gas). Scaling laws are obtained analytically in the asymptotic limit of a small short distance cut-off. Our analytical model captures the essential physics of the problem and compares remarkably well with the full numerical solutions.Comment: Submitted to Phys. Rev. E. New material adde

    A Comparative Study of Single and Dual Perfusion During End-ischemic Subnormothermic Liver Machine Preservation

    Get PDF
    Background: It remains controversial if arterial perfusion in addition to portal vein perfusion during machine preservation improves liver graft quality. Comparative studies using both techniques are lacking. We studied the impact of using single or dual machine perfusion of donation after circulatory death rat livers. In addition, we analyzed the effect of pulsatile versus continuous arterial flow. Methods: Donation after circulatory death rat livers (n = 18) were preserved by 6 hours cold storage, followed by 1 hour subnormothermic machine perfusion (20 degrees C, pressure of 40/5 mm Hg) and 2 hours ex vivo warm reperfusion (37 degrees C, pressure of 80/11 mm Hg, 9% whole blood). Machine preservation was either through single portal vein perfusion (SP), dual pulsatile (DPP), or dual continuous perfusion (DCP) of the portal vein and hepatic artery. Hydrodynamics, liver function tests, histopathology, and expression of endothelial specific genes were assessed during 2 hours warm reperfusion. Results: At the end of reperfusion, arterial flow in DPP livers tended to be higher compared to DCP and SP grafts. However, this difference was not significant nor was better flow associated with better outcome. No differences in bile production or alanine aminotransferase levels were observed. SP livers had significantly lower lactate compared to DCP, but not DPP livers. Levels of Caspase-3 and tumor necrosis factor-alpha were similar between the groups. Expression of endothelial genes Kruppel-like-factor 2 and endothelial nitric oxide synthase tended to be higher in dual perfused livers, but no histological evidence of better preservation of the biliary endothelium or vasculature of the hepatic artery was observed. Conclusions: This study shows comparable outcomes after using a dual or single perfusion approach during end-ischemic subnormothermic liver machine preservation

    Metformin Preconditioning Improves Hepatobiliary Function and Reduces Injury in a Rat Model of Normothermic Machine Perfusion and Orthotopic Transplantation

    Get PDF
    Background. Preconditioning of donor livers before organ retrieval may improve organ quality after transplantation. We investigated whether preconditioning with metformin reduces preservation injury and improves hepatobiliary function in rat donor livers during ex situ normothermic machine perfusion (NMP) and after orthotopic liver transplantation. Methods. Lewis rats were administered metformin via oral gavage, after which a donor hepatectomy was performed followed by a standardized cold storage period of 4 hours. Graft assessment was performed using NMP via double perfusion of the hepatic artery and portal vein. In an additional experiment, rat donor livers preconditioned with metformin were stored on ice for 4 hours and transplanted to confirm postoperative liver function and survival. Data were analyzed and compared with sham-fed controls. Results. Graft assessment using NMP confirmed that preconditioning significantly improved ATP production, markers for hepatobiliary function (total bile production, biliary bilirubin, and bicarbonate), and significantly lowered levels of lactate, glucose, and apoptosis. After orthotopic liver transplantation, metformin preconditioning significantly reduced transaminase levels. Conclusions. Preconditioning with metformin lowers hepatobiliary injury and improves hepatobiliary function in an in situ and ex situ model of rat donor liver transplantation

    Scientific Advice on the estimation of surplus for Sustainable Fisheries Partnership Agreements.

    Get PDF
    Scientific advice on the concept of surplus, as defined by the UNCLOS, was provided for three types of Sustainable Fisheries Partnership Agreements (SFPAs): i) Mixed SFPAs in West Africa, ii) Tuna SFPAs and iii) SFPA with Greenland. For Mixed SFPAs in West Africa, methods for surplus computation were defined, including alternatives for cases of data limited stocks. These methods may use as input five parameters that could be obtained from those recent stocks assessments that are representative of the current stock status. Surplus estimates would need to be regularly updated (ideally, yearly), according to every new stock assessments and following the enforcement of a management plan (or, by default, according to a transition scheme towards reaching Fmsy in 2020). In the case of West African transboundary stocks, a theoretical share of the surplus could be calculated using a standard rule based on historical catches within EEZs. The Surplus concept is not applicable for Tuna SFPAs, due to the high migratory character of tuna or tuna-like species, the fact that these stocks are mostly found in areas beyond national jurisdictions, the lack of direct estimates of local abundance and impossibility to calculate the capacity of the coastal States. For the SFPA with Greenland, Surplus is considered as any TAC allocated to Greenland and not utilised by this coastal State

    Second Generation of Antisense Oligonucleotides: From Nuclease Resistance to Biological Efficacy in Animals

    Get PDF
    From efforts to improve the biophysical properties of antisense oligonucleotides by incorporating backbone- or sugar-modified nucleoside analogs, 2'-O-methoxyethyl ribonucleosides 8b were identified as building blocks for a second generation of antisense oligonucleotides. Compounds containing these modifications were demonstrated to combine the benefit of a high binding affinity to the RNA complement with a large increase in nuclease resistance, allowing the use of regular phosphodiester linkages. Chimeric oligonucleotides with 2'-O-methoxyethyl ribonucleosides, 8b, in the wings and a central DNA-phosphorothioate window were shown to efficiently downregulate C-'raf' kinase and PKC-α messenger-RNA in tumor cell lines resulting in a profound inhibition of cell proliferation. The same compounds were able to effectively reduce the growth of tumors in animal models at low concentrations indicating the potential utility of these second generation antisense oligonucleotides for therapeutic applications
    • …
    corecore