32 research outputs found

    A Unified Picture of the FIP and Inverse FIP Effects

    Full text link
    We discuss models for coronal abundance anomalies observed in the coronae of the sun and other late-type stars following a scenario first introduced by Schwadron, Fisk & Zurbuchen of the interaction of waves at loop footpoints with the partially neutral gas. Instead of considering wave heating of ions in this location, we explore the effects on the upper chromospheric plasma of the wave ponderomotive forces. These can arise as upward propagating waves from the chromosphere transmit or reflect upon reaching the chromosphere-corona boundary, and are in large part determined by the properties of the coronal loop above. Our scenario has the advantage that for realistic wave energy densities, both positive and negative changes in the abundance of ionized species compared to neutrals can result, allowing both FIP and Inverse FIP effects to come out of the model. We discuss how variations in model parameters can account for essentially all of the abundance anomalies observed in solar spectra. Expected variations with stellar spectral type are also qualitatively consistent with observations of the FIP effect in stellar coronae.Comment: 25 pages, 4 figures, submitted to Ap

    Radiative Hydrodynamic Models of the Optical and Ultraviolet Emission from Solar Flares

    Full text link
    We report on radiative hydrodynamic simulations of moderate and strong solar flares. The flares were simulated by calculating the atmospheric response to a beam of non-thermal electrons injected at the apex of a one-dimensional closed coronal loop, and include heating from thermal soft X-ray, extreme ultraviolet and ultraviolet (XEUV) emission. The equations of radiative transfer and statistical equilibrium were treated in non-LTE and solved for numerous transitions of hydrogen, helium, and Ca II allowing the calculation of detailed line profiles and continuum emission. This work improves upon previous simulations by incorporating more realistic non-thermal electron beam models and includes a more rigorous model of thermal XEUV heating. We find XEUV backwarming contributes less than 10% of the heating, even in strong flares. The simulations show elevated coronal and transition region densities resulting in dramatic increases in line and continuum emission in both the UV and optical regions. The optical continuum reaches a peak increase of several percent which is consistent with enhancements observed in solar white light flares. For a moderate flare (~M-class), the dynamics are characterized by a long gentle phase of near balance between flare heating and radiative cooling, followed by an explosive phase with beam heating dominating over cooling and characterized by strong hydrodynamic waves. For a strong flare (~X-class), the gentle phase is much shorter, and we speculate that for even stronger flares the gentle phase may be essentially non-existent. During the explosive phase, synthetic profiles for lines formed in the upper chromosphere and transition region show blue shifts corresponding to a plasma velocity of ~120 km/s, and lines formed in the lower chromosphere show red shifts of ~40 km/s.Comment: 21 pages, 15 figures. Will appear in 2005 September 1 issue of the Ap

    Local re-acceleration and a modified thick target model of solar flare electrons

    Get PDF
    The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost 'Standard Model' of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves.} {We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection.} {We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E{\cal E}) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop.} {Combined MHD and test particle simulations show that local E{\cal E} fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfv\'{e}n speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features.Comment: 8 pages, 2 figure

    Spectro-Polarimetric Observation of an Emerging Flux Region: Triggering Mechanism of Ellerman Bombs

    Full text link
    High spatial resolution observation of an emerging flux region (EFR) was done using a vector magnetograph and a H-alpha Lyot filtergraph with Domeless Solar Telescope at Hida Observatory on October 22, 2006. In H-alpha wing images, we could see many Ellerman bombs (EBs) in the EFR. Two observation modes, slit scan and slit fixed, were performed with the vector magnetograph, along with H-alpha filtergraph. Using H-alpha wing images, we detected 12 EBs during slit scan observation period and 9 EBs during slit fixed observation period. With slit scan observation, we found that all the EBs were distributed in the area where the spatial gradient of vertical field intensity was large, which indicates the possibility of rapid topological change in magnetic field in the area of EBs. With slit fixed observation, we found that EBs were distributed in the areas of undulatory magnetic fields, both in vertical and horizontal components. This paper is the first to report the undulatory pattern in horizontal components of magnetic field, which is also evidence for emerging magnetic flux by Parker instability. These results allow us to confirm the association between EBs and emerging flux tubes. Three triggering mechanism of EBs is discussed with respect to emerging flux tubes: 9 out of 21 EBs occurred at the footpoints of emerging flux tubes, 8 out of 21 EBs occurred at the top of emerging flux tubes, and 4 out of 21 EBs occurred at unipolar region. Each case can be explained by magnetic reconnection in the low chromosphere.Comment: 30 pages, 17 figure

    An XMM-Newton Study of the Coronae of σ2\sigma^2 Coronae Borealis

    Full text link
    (Abridged) We present results of XMM-Newton observations of the RS CVn binary σ2\sigma^2 Coronae Borealis. The RGS and EPIC MOS2 spectra were simultaneously fitted with collisional ionization equilibrium plasma models to determine coronal abundances of various elements. Contrary to the solar first ionization potential (FIP) effect in which elements with a low FIP are overabundant in the corona compared to the solar photosphere, and contrary to the ``inverse'' FIP effect observed in several active RS CVn binaries, coronal abundance ratios in σ2\sigma^2 CrB show a complex pattern as supported by similar findings in the Chandra HETGS analysis of σ2\sigma^2 CrB with a different methodology (Osten et al. 2003). Low-FIP elements (<10<10 eV) have their abundance ratios relative to Fe consistent with the solar photospheric ratios, whereas high-FIP elements have their abundance ratios increase with increasing FIP. We find that the coronal Fe abundance is consistent with the stellar photospheric value, indicating that there is no metal depletion in σ2\sigma^2 CrB. However, we obtain a higher Fe absolute abundance than in Osten et al. (2003). Except for Ar and S, our absolute abundances are about 1.5 times larger than those reported by Osten et al. (2003). However, a comparison of their model with our XMM-Newton data (and vice versa) shows that both models work adequately in general. We find, therefore, no preference for one methodology over the other to derive coronal abundances. Despite the systematic discrepancy in absolute abundances, our abundance ratios are very close to those obtained by Osten et al. (2003). Finally, we confirm the measurement of a low density in \ion{O}{7} (<4×1010< 4 \times 10^{10} cm3^{-3}), but could not confirm the higher densities measured in spectral lines formed at higher temperatures.Comment: To appear in Astrophysical Journal (ApJ 10 September 2005, v630 2 issue

    Long-term optical/infrared variability in the quiescent X-ray transient V404 Cyg

    Get PDF
    We present the results of optical and infrared photometry of the quiescent X-ray transient V404 Cyg during the period 1992-2003. The ellipsoidal modulations extracted from the most complete databases (years 1992, 1998 and 2001) show unequal maxima and minima with relative strength varying from year to year although their peak to peak amplitudes remain roughly constant at 0.24+-0.01 magnitudes. Fast optical variations superimposed on the secondary star's double-humped ellipsoidal modulation were detected every year with a mean amplitude of ~0.07 mags. We have not found significant changes in the activity during this decade which indicates that this variability is probably not connected to the 1989 outburst. We have found periodicities in the 1998 and 2001 data near the 6 hr quasi-periodicity observed in 1992, although we interpret it as consequence of the appearance of a flare event almost every night. Significant variability is also present in the I and near infrared (J and K_short) bands and this decreases slightly or remains approximately constant at longer wavelengths. A cross correlation analysis shows that both the R and I emission are simultaneous down to 40 s.Comment: 13 pages, 11 figures; accepted for publication in MNRA
    corecore