84 research outputs found
Predicting question difficulty in web surveys: A machine learning approach based on mouse movement features
Survey research aims to collect robust and reliable data from respondents. However, despite researchers’ efforts in designing questionnaires, survey instruments may be imperfect, and question structure not as clear as could be, thus creating a burden for respondents. If it were possible to detect such problems, this knowledge could be used to predict problems in a questionnaire during pretesting, inform real-time interventions through responsive questionnaire design, or to indicate and correct measurement error after the fact. Previous research has used paradata, specifically response times, to detect difficulties and help improve user experience and data quality. Today, richer data sources are available, for example, movements respondents make with their mouse, as an additional detailed indicator for the respondent–survey interaction. This article uses machine learning techniques to explore the predictive value of mouse-tracking data regarding a question’s difficulty. We use data from a survey on respondents’ employment history and demographic information, in which we experimentally manipulate the difficulty of several questions. Using measures derived from mouse movements, we predict whether respondents have answered the easy or difficult version of a question, using and comparing several state-of-the-art supervised learning methods. We have also developed a personalization method that adjusts for respondents’ baseline mouse behavior and evaluate its performance. For all three manipulated survey questions, we find that including the full set of mouse movement measures and accounting for individual differences in these measures improve prediction performance over response-time-only models.German Research Foundation (DFG)Peer Reviewe
Analyse verbreiteter Anwendungen zum Lesen von elektronischen Büchern
Der Marktanteil elektronischer Bucher (E-Books) am Buchmarkt wächst beständig. Um E-Books zu rezipieren, benötigt man spezielle Leseumgebungen, die als Software (im Browser oder als eigene Anwendung) oder als Spezialgerät (E-Reader) realisiert sein können. Diese Leseumgebungen sind geeignet, Daten über das Leseverhalten zu sammeln. Im Rahmen einer universitären Lehrveranstaltung wurden die Software-Leseumgebungen der beiden deutschen Marktführer Kindle und Tolino untersucht. Der vorliegende Bericht fasst die Ergebnisse dieser Analysen zusammen. Das Ergebnis ist eine umfassende Bestandsaufnahme der digitalen Spuren, die durch die Benutzung der Programme entstehen. Betrachtet wurden die zum Untersuchungszeitpunkt aktuellen Versionen der jeweiligen Webanwendungen und Android-Apps sowie des Kindle-Windows-Clients. Die Ergebnisse entstanden im Rahmen einer Übung zur Vorlesung Fortgeschrittene forensische Informatik II im Wintersemester 2018/19 an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), die gemeinsam durchgeführt wurde vom Lehrstuhl fur Informatik 1 und dem Institut für Buchwissenschaft an der FAU
FelixHenninger/lab.js: 2017.1.0
This release represents a major update, adding the builder tool as well as considerable updates to documentation and library internals. Please consult the documentation for additional information.
Some highlights:
New builder interface
Asynchronous, promise-based library API
Extended automated test suite
Revised logo
Contributors
Felix Henninger
Ulf K. Mertens
Yury Shevchenk
- …