7,876 research outputs found

    Inconsistent use of gesture space during abstract pointing impairs language comprehension

    Get PDF
    Pointing toward concrete objects is a well-known and efficient communicative strategy. Much less is known about the communicative effectiveness of abstract pointing where the pointing gestures are directed to “empty space.” McNeill's (2003) observations suggest that abstract pointing can be used to establish referents in gesture space, without the referents being physically present. Recently, however, it has been shown that abstract pointing typically provides redundant information to the uttered speech thereby suggesting a very limited communicative value (So et al., 2009). In a first approach to tackle this issue we were interested to know whether perceivers are sensitive at all to this gesture cue or whether it is completely discarded as irrelevant add-on information. Sensitivity to for instance a gesture-speech mismatch would suggest a potential communicative function of abstract pointing. Therefore, we devised a mismatch paradigm in which participants watched a video where a female was interviewed on various topics. During her responses, she established two concepts in space using abstract pointing (e.g., pointing to the left when saying Donald, and pointing to the right when saying Mickey). In the last response to each topic, the pointing gesture accompanying a target word (e.g., Donald) was either consistent or inconsistent with the previously established location. Event related brain potentials showed an increased N400 and P600 when gesture and speech referred to different referents, indicating that inconsistent use of gesture space impairs language comprehension. Abstract pointing was found to influence comprehension even though gesture was not crucial to understanding the sentences or conducting the experimental task. These data suggest that a referent was retrieved via abstract pointing and that abstract pointing can potentially be used for referent indication in a discourse. We conclude that abstract pointing has a potential communicative function

    Resolving the chemical substructure of Orion-KL

    Full text link
    The Kleinmann-Low nebula in Orion (Orion-KL) is the nearest example of a high-mass star-forming environment. For the first time, we complemented 1.3 mm Submillimeter Array (SMA) interferometric line survey with IRAM 30 m single-dish observations of the Orion-KL region. Covering a 4 GHz bandwidth in total, this survey contains over 160 emission lines from 20 species (25 isotopologues), including 11 complex organic molecules (COMs). At a spatial resolution of 1200 AU, the continuum substructures are resolved. Extracting the spectra from individual substructures and providing the intensity-integrated distribution map for each species, we studied the small-scale chemical variations in this region. Our main results are: (1) We identify lines from the low-abundance COMs CH3COCH3 and CH3CH2OH, as well as tentatively detect CH3CHO and long carbon-chains C6H and HC7N. (2) We find that while most COMs are segregated by type, peaking either towards the hot core (e.g., N-bearing species) or the compact ridge (e.g., O-bearing species like HCOOCH3 and CH3OCH3), while the distributions of others do not follow this segregated structure (e.g., CH3CH2OH, CH3OH, CH3COCH3). (3) We find a second velocity component of HNCO, SO2, 34SO2, and SO lines, which may be associated with a strong shock event in the low-velocity outflow. (4) Temperatures and molecular abundances show large gradients between central condensations and the outflow regions, illustrating a transition between hot molecular core and shock-chemistry dominated regimes. Our observations of spatially resolved chemical variations in Orion-KL provide the nearest reference source for hot molecular core and outflow chemistry, which will be an important example for interpreting the chemistry of more distant HMSFRs.Comment: 51 pages, 17 figures, accepted on 12 March 2015 Dashed lines in Figure 10 of the published paper was missin

    Dust rings and filaments around the isolated young star V1331 Cygni

    Get PDF
    We characterize the small and large scale environment of the young star V1331 Cygni with high resolution HST/WFPC2 and Digitized Sky Survey images. In addition to a previously known outer dust ring (~30'' in diameter), the HST/WFPC2 scattered light image reveals an inner dust ring for the first time. This ring has a maximum radius of 6.5'' and is possibly related to a molecular envelope. Large-scale optical images show that V1331 Cyg is located at the tip of a long dust filament linking it to the dark cloud LDN 981. We discuss the origin of the observed dust morphology and analyze the object's relation to its parent dark cloud LDN 981. Finally, based on recent results from the literature, we investigate the properties of V1331 Cyg and conclude that in its current state the object does not show suffcient evidence to be characterized as an FU Ori object.Comment: 15 pages ApJ preprint style including 3 figures, accepted for publication in ApJ (Feb. 2007

    Annual lespedeza

    Get PDF
    "Annual lespedeza is an acid tolerant, drought resistant, summer annual legume which is useful for pasture, hay and soil improvement. The two species of annual lespedeza grown in Missouri are Lespedeza striata (common) and Lespedeza stipulacea (Korean). Common lespedeza, a striate type, was first reported growing in Georgia in 1846. Since it came from Japan, it was called Japan clover; later it became known as common lespedeza. Common lespedeza was reported growing in south Missouri shortly after the Civil War. Another striate variety, named Kobe, was introduced from Japan in 1919. Kobe grows much larger than common, is more erect in habit of growth and produces more hay or pasture. The striate varieties, common and Kobe, mature later and require a longer growing season than Korean. They are better adapted in the southern part of Missouri and other states to the south. The common types are also more tolerant to lower fertility and more acid soils."--First page.Jimmy C. Henning and Nonnan E. Risner (Department of Agronomy)New 1/88/5

    The Mizzou mobile forage testing lab

    Get PDF
    "Missouri forage and livestock producers now have access to the Mizzou Mobile Forage Testing Laboratory. It contains the most modern forage testing equipment that can give accurate test results in less than 15 minutes. The equipment is mounted in a climate-controlled mobile van that is accessible to farmers throughout the state. The lab will be making scheduled stops to assist farmers in evaluating forage quality. University of Missouri Extension Agronomy personnel will operate it and handle the scheduling. Contact your local Extension office to find out when the unit will be in your area."--First page.Jimmy C. Henning and Norman E. Risner (Agronomy Department)New 7/88/7.5

    Carbon/graphite fiber risk analysis and assessment study: An assessment of the risk to Douglas commercial transport aircraft

    Get PDF
    The potential hazard to electrical and electronic devices should there be a release of free carbon fibers due to an aircraft crash and fire was assessed. Exposure and equipment sensitivity data were compiled for a risk analysis. Results are presented in the following areas: DC-9/DC-10 electrical/electronic component characterization; DC-9 and DC-10 fiber transfer functions; potential for transport aircraft equipment exposure to carbon fibers; and equipment vulnerability assessment. Results reflect only a negligible increase in risk for the DC-9 and DC-10 fleets either now or projected to 1993

    Properties and occurrence rates of KeplerKepler exoplanet candidates as a function of host star metallicity from the DR25 catalog

    Get PDF
    Correlations between the occurrence rate of exoplanets and their host star properties provide important clues about the planet formation processes. We studied the dependence of the observed properties of exoplanets (radius, mass, and orbital period) as a function of their host star metallicity. We analyzed the planetary radii and orbital periods of over 2800 KeplerKepler candidates from the latest KeplerKepler data release DR25 (Q1-Q17) with revised planetary radii based on GaiaGaia~DR2 as a function of host star metallicity (from the Q1-Q17 (DR25) stellar and planet catalog). With a much larger sample and improved radius measurements, we are able to reconfirm previous results in the literature. We show that the average metallicity of the host star increases as the radius of the planet increases. We demonstrate this by first calculating the average host star metallicity for different radius bins and then supplementing these results by calculating the occurrence rate as a function of planetary radius and host star metallicity. We find a similar trend between host star metallicity and planet mass: the average host star metallicity increases with increasing planet mass. This trend, however, reverses for masses >4.0MJ> 4.0\, M_\mathrm{J}: host star metallicity drops with increasing planetary mass. We further examined the correlation between the host star metallicity and the orbital period of the planet. We find that for planets with orbital periods less than 10 days, the average metallicity of the host star is higher than that for planets with periods greater than 10 days.Comment: 14 pages, 13 Figures, Accepted for publication in The Astronomical Journa

    Signatures of Planets in Spatially Unresolved Disks

    Full text link
    Main sequence stars are commonly surrounded by debris disks, composed of cold dust continuously replenished by a reservoir of undetected dust-producing planetesimals. In a planetary system with a belt of planetesimals (like the Solar System's Kuiper Belt) and one or more interior giant planets, the trapping of dust particles in the mean motion resonances with the planets can create structure in the dust disk, as the particles accumulate at certain semimajor axes. Sufficiently massive planets may also scatter and eject dust particles out of a planetary system, creating a dust depleted region inside the orbit of the planet. In anticipation of future observations of spatially unresolved debris disks with the Spitzer Space Telescope, we are interested in studying how the structure carved by planets affects the shape of the disk's spectral energy distribution (SED), and consequently if the SED can be used to infer the presence of planets. We numerically calculate the equilibrium spatial density distributions and SEDs of dust disks originated by a belt of planetesimals in the presence of interior giant planets in different planetary configurations, and for a representative sample of chemical compositions. The dynamical models are necessary to estimate the enhancement of particles near the mean motion resonances with the planets, and to determine how many particles drift inside the planet's orbit. Based on the SEDs and predicted Spitzer\it{Spitzer} colors we discuss what types of planetary systems can be distinguishable from one another and the main parameter degeneracies in the model SEDs.Comment: 40 pages (pre-print form), including 16 figures. Published in ApJ 200
    corecore