2,388 research outputs found

    Application of the Instrumental Inequalities to a Mendelian Randomization Study With Multiple Proposed Instruments

    Get PDF
    BACKGROUND: Investigators often support the validity of Mendelian randomization (MR) studies, an instrumental variable approach proposing genetic variants as instruments, via. subject matter knowledge. However, the instrumental variable model implies certain inequalities, offering an empirical method of falsifying (but not verifying) the underlying assumptions. Although these inequalities are said to detect only extreme assumptio

    What changed your mind : the roles of dynamic topics and discourse in argumentation process

    Get PDF
    In our world with full of uncertainty, debates and argumentation contribute to the progress of science and society. Despite of the in- creasing attention to characterize human arguments, most progress made so far focus on the debate outcome, largely ignoring the dynamic patterns in argumentation processes. This paper presents a study that automatically analyzes the key factors in argument persuasiveness, beyond simply predicting who will persuade whom. Specifically, we propose a novel neural model that is able to dynamically track the changes of latent topics and discourse in argumentative conversations, allowing the investigation of their roles in influencing the outcomes of persuasion. Extensive experiments have been conducted on argumentative conversations on both social media and supreme court. The results show that our model outperforms state-of-the-art models in identifying persuasive arguments via explicitly exploring dynamic factors of topic and discourse. We further analyze the effects of topics and discourse on persuasiveness, and find that they are both useful -- topics provide concrete evidence while superior discourse styles may bias participants, especially in social media arguments. In addition, we draw some findings from our empirical results, which will help people better engage in future persuasive conversations

    Population-level neural correlates of flexible avoidance learning in medial prefrontal cortex

    Get PDF
    The medial prefrontal cortex (mPFC) has been proposed to link sensory inputs and behavioral outputs to mediate the execution of learned behaviors. However, how such a link is implemented has remained unclear. To measure prefrontal neural correlates of sensory stimuli and learned behaviors, we performed population calcium imaging during a novel tone-signaled active avoidance paradigm in mice. We developed a novel analysis approach based on dimensionality reduction and decoding that allowed us to identify and isolate population activity patterns related the tone stimulus, learned avoidance actions and general motion. While tone-related activity was not informative about behavior, avoidance-related activity was predictive of upcoming avoidance actions. Moreover, avoidance-related activity distinguished between two different learned avoidance actions, consistent with a model in which mPFC contributes to the selection between different goal-directed actions. Overall, our results suggest that mPFC circuit dynamics transform sensory inputs into specific behavioral outputs through distributed population-level computations

    A New Paradigm for MAPK: Structural Interactions of hERK1 with Mitochondria in HeLa Cells

    Get PDF
    Extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) are members of the MAPK family and participate in the transduction of stimuli in cellular responses. Their long-term actions are accomplished by promoting the expression of specific genes whereas faster responses are achieved by direct phosphorylation of downstream effectors located throughout the cell. In this study we determined that hERK1 translocates to the mitochondria of HeLa cells upon a proliferative stimulus. In the mitochondrial environment, hERK1 physically associates with (i) at least 5 mitochondrial proteins with functions related to transport (i.e. VDAC1), signalling, and metabolism; (ii) histones H2A and H4; and (iii) other cytosolic proteins. This work indicates for the first time the presence of diverse ERK-complexes in mitochondria and thus provides a new perspective for assessing the functions of ERK1 in the regulation of cellular signalling and trafficking in HeLa cells

    Engineering meniscus structure and function via multi-layered mesenchymal stem cell-seeded nanofibrous scaffolds

    Get PDF
    Despite advances in tissue engineering for the knee meniscus, it remains a challenge to match the complex macroscopic and microscopic structural features of native tissue, including the circumferentially and radially aligned collagen bundles essential for mechanical function. To mimic this structural hierarchy, this study developed multi-lamellar mesenchymal stem cell (MSC)-seeded nanofibrous constructs. Bovine MSCs were seeded onto nanofibrous scaffolds comprised of poly(Δ-caprolactone) with fibers aligned in a single direction (0° or 90° to the scaffold long axis) or circumferentially aligned (C). Multi-layer groups (0°/0°/0°, 90°/90°/90°, 0°/90°/0°, 90°/0°/90°, and C/C/C) were created and cultured for a total of 6 weeks under conditions favoring fibrocartilaginous tissue formation. Tensile testing showed that 0° and C single layer constructs had stiffness values several fold higher than 90° constructs. For multi-layer groups, the stiffness of 0°/0°/0° constructs was higher than all other groups, while 90°/90°/90° constructs had the lowest values. Data for collagen content showed a general positive interactive effect for multi-layers relative to single layer constructs, while a positive interaction for stiffness was found only for the C/C/C group. Collagen content and cell infiltration occurred independent of scaffold alignment, and newly formed collagenous matrix followed the scaffold fiber direction. Structural hierarchies within multi-lamellar constructs dictated biomechanical properties, and only the C/C/C constructs with non-orthogonal alignment within layers featured positive mechanical reinforcement as a consequence of the layered construction. These multi-layer constructs may serve as functional substitutes for the meniscus as well as test beds to understand the complex mechanical principles that enable meniscus function

    Deficiency of the zinc finger protein ZFP106 causes motor and sensory neurodegeneration

    Get PDF
    Acknowledgements We are indebted to Jim Humphries, JennyCorrigan, LizDarley, Elizabeth Joynson, Natalie Walters, Sara Wells and the whole necropsy, histology, genotyping and MLC ward 6 teams at MRC Harwell for excellent technical assistance. We thank the staff of the WTSI Illumina Bespoke Team for the RNA-seq data, the Sanger Mouse Genetics Project for the initial mouse characterization and Dr David Adams for critical reading of the manuscript. We also thank KOMP for the mouse embryonic stem cells carrying the knockout first promoter-less allele (tm1a(KOMP)Wtsi) within Zfp016. Conflict of Interest statement. None declared. Funding This work was funded by the UK Medical Research Council (MRC) to A.A.-A. and a Motor Neurone Disease Association (MNDA) project grant to A.A.-A. and EMCF. D.L.H.B. is a Wellcome Trust Senior Clinical Scientist Fellow and P.F. is a MRC/MNDA Lady Edith Wolfson Clinician Scientist Fellow. Funding to pay the Open Access publication charges for this article was provided by the MRC grant number: MC_UP_A390_1106.Peer reviewedPublisher PD

    Effects of Mesenchymal Stem Cell and Growth Factor Delivery on Cartilage Repair in a Mini-Pig Model

    Get PDF
    We have recently shown that mesenchymal stem cells (MSCs) embedded in a hyaluronic acid (HA) hydrogel and exposed to chondrogenic factors (transforming growth factor–ÎČ3 [TGF-ÎČ3]) produce a cartilage-like tissue in vitro. The current objective was to determine if these same factors could be combined immediately prior to implantation to induce a superior healing response in vivo relative to the hydrogel alone

    The skeletal phenotype of chondroadherin deficient mice

    Get PDF
    Chondroadherin, a leucine rich repeat extracellular matrix protein with functions in cell to matrix interactions, binds cells via their a2b1 integrin as well as via cell surface proteoglycans, providing for different sets of signals to the cell. Additionally, the protein acts as an anchor to the matrix by binding tightly to collagens type I and II as well as type VI. We generated mice with inactivated chondroadherin gene to provide integrated studies of the role of the protein. The null mice presented distinct phenotypes with affected cartilage as well as bone. At 3–6 weeks of age the epiphyseal growth plate was widened most pronounced in the proliferative zone. The proteome of the femoral head articular cartilage at 4 months of age showed some distinct differences, with increased deposition of cartilage intermediate layer protein 1 and fibronectin in the chondroadherin deficient mice, more pronounced in the female. Other proteins show decreased levels in the deficient mice, particularly pronounced for matrilin-1, thrombospondin-1 and notably the members of the a1-antitrypsin family of proteinase inhibitors as well as for a member of the bone morphogenetic protein growth factor family. Thus, cartilage homeostasis is distinctly altered. The bone phenotype was expressed in several ways. The number of bone sialoprotein mRNA expressing cells in the proximal tibial metaphysic was decreased and the osteoid surface was increased possibly indicating a change in mineral metabolism. Micro-CT revealed lower cortical thickness and increased structure model index, i.e. the amount of plates and rods composing the bone trabeculas. The structural changes were paralleled by loss of function, where the null mice showed lower femoral neck failure load and tibial strength during mechanical testing at 4 months of age. The skeletal phenotype points at a role for chondroadherin in both bone and cartilage homeostasis, however, without leading to altered longitudinal growth

    Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like stars

    Full text link
    We present the discovery of debris systems around three solar mass stars based upon observations performed with the Spitzer Space Telescope as part of a Legacy Science Program, ``the Formation and Evolution of Planetary Systems'' (FEPS). We also confirm the presence of debris around two other stars. All the stars exhibit infrared emission in excess of the expected photospheres in the 70 micron band, but are consistent with photospheric emission at <= 33 micron. This restricts the maximum temperature of debris in equilibrium with the stellar radiation to T < 70 K. We find that these sources are relatively old in the FEPS sample, in the age range 0.7 - 3 Gyr. Based on models of the spectral energy distributions, we suggest that these debris systems represent materials generated by collisions of planetesimal belts. We speculate on the nature of these systems through comparisons to our own Kuiper Belt, and on the likely planet(s) responsible for stirring the system and ultimately releasing dust through collisions. We further report observations of a nearby star HD 13974 (d =11 pc) that is indistinguishable from a bare photosphere at both 24 micron and 70 micron. The observations place strong upper limits on the presence of any cold dust in this nearby system (L_IR/L_* < 10^{-5.2}).Comment: 31 pages, 9 figures, accepted for publication in Ap
    • 

    corecore