317 research outputs found

    Enhanced secondary organic aerosol formation due to water uptake by fine particles

    Get PDF
    This study characterizes the partitioning behavior of a significant fraction of the ambient organic aerosol through simultaneous measurements of gas and particle watersoluble organic carbon (WSOC). During the summer in Atlanta, WSOC gas/particle partitioning showed a strong RH dependence that was attributed to particulate liquid water. At elevated RH levels (\u3e70%) a significant increase in WSOC partitioning to the particle phase was observed and followed the predicted water uptake by fine particles. The enhancement in particle-phase partitioning translated to increased median particle WSOC concentrations ranging from 0.3 ā€“0.9 mgCm3 . The results provide a detailed overview of the WSOC partitioning behavior in the summertime in an urban region dominated by biogenic emissions, and indicate that secondary organic aerosol formation involving partitioning to liquid water may be a significant aerosol formation route that is generally not considered. Citation: Hennigan, C. J., M. H. Bergin, J. E. Dibb, and R. J. Weber (2008), Enhanced secondary organic aerosol formation due to water uptake by fine particles, Geophys. Res. Lett., 35, L18801, doi:10.1029/2008GL035046

    Direct Atmospheric Evidence for the Irreversible Formation Of Aqueous Secondary Organic Aerosol

    Get PDF
    The reversible nature of aqueous secondary organic aerosol (aqSOA) formation was characterized for the first time through direct atmospheric measurements. Water-soluble organic carbon in the gas and particle phases (WSOCg and WSOCp) was measured simultaneously to quantify aqSOA formation in Baltimore, Maryland. During the nighttime, aqSOA formation was evident as WSOCg increasingly partitioned to the particle phase with increasing relative humidity (RH). To characterize the reversible/irreversible nature of this aqSOA, the WSOCp measurement was alternated through an unperturbed ambient channel and through a ā€œdriedā€ channel maintained at ~40% RH (with 7 s residence time) to mimic the natural drying particles undergo throughout the day. Across the entire RH range encountered, there was no statistically significant difference in WSOCp concentrations through the dry and ambient channels, indicating that the aqSOA remained in the condensed phase upon the evaporation of aerosol water. This strongly suggests that the observed aqSOA was formed irreversibly

    The Effects of Isoprene and NOx on Secondary Organic Aerosols Formed Through Reversible and Irreversible Uptake to Aerosol Water

    Get PDF
    Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles

    Dynamics of disordered quantum Hall crystals

    Full text link
    Charge density waves are thought to be common in two-dimensional electron systems in quantizing magnetic fields. Such phases are formed by the quasiparticles of the topmost occupied Landau level when it is partially filled. One class of charge density wave phases can be described as electron solids. In weak magnetic fields (at high Landau levels) solids with many particles per unit cell - bubble phases - predominate. In strong magnetic fields (at the lowest Landau level) only crystals with one particle per unit cell - Wigner crystals - can form. Experimental identification of these phases is facilitated by the fact that even a weak disorder influences their dc and ac magnetotransport in a very specific way. In the ac domain, a range of frequencies appears where the electromagnetic response is dominated by magnetophonon collective modes. The effect of disorder is to localize the collective modes and to create an inhomogeneously broadened absorption line, the pinning mode. In recent microwave experiments pinning modes have been discovered both at the lowest and at high Landau levels. We present the theory of the pinning mode for a classical two-dimensional electron crystal collectively pinned by weak impurities. We show that long-range Coulomb interaction causes a dramatic line narrowing, in qualitative agreement with the experiments.Comment: 6 pages, 3 figures. To be presented at EP2DS-15, Nara, Japan. One typo correcte

    Secondary aerosol formation from photochemical aging of aircraft exhaust in a smog chamber

    Get PDF
    Field experiments were performed to investigate the effects of photo-oxidation on fine particle emissions from an in-use CFM56-2B gas turbine engine mounted on a KC-135 Stratotanker airframe. Emissions were sampled into a portable smog chamber from a rake inlet installed one-meter downstream of the engine exit plane of a parked and chocked aircraft. The chamber was then exposed to sunlight and/or UV lights to initiate photo-oxidation. Separate tests were performed at different engine loads (4, 7, 30, 85 %). Photo-oxidation created substantial secondary particulate matter (PM), greatly exceeding the direct PM emissions at each engine load after an hour or less of aging at typical summertime conditions. After several hours of photo-oxidation, the ratio of secondary-to-primary PM mass was on average 35 ± 4.1, 17 ± 2.5, 60 ± 2.2, and 2.7 ± 1.1 for the 4, 7, 30, and 85 % load experiments, respectively. The composition of secondary PM formed strongly depended on load. At 4 % load, secondary PM was dominated by secondary organic aerosol (SOA). At higher loads, the secondary PM was mainly secondary sulfate. A traditional SOA model that accounts for SOA formation from single-ring aromatics and other volatile organic compounds underpredicts the measured SOA formation by ~60 % at 4 % load and ~40 % at 85 % load. Large amounts of lower-volatiliy organic vapors were measured in the exhaust; they represent a significant pool of SOA precursors that are not included in traditional SOA models. These results underscore the importance of accounting for atmospheric processing when assessing the influence of aircraft emissions on ambient PM levels. Models that do not account for this processing will likely underpredict the contribution of aircraft emissions to local and regional air pollution

    Similarities and differences between the E5 oncoproteins of bovine papillomaviruses type 1 and type 4: Cytoskeleton, motility and invasiveness in E5-transformed bovine and mouse cells

    Get PDF
    Bovine papillomaviruses (BPVs) are oncogenic viruses. In cattle, BPV-1/2 is associated with urinary bladder cancer and BPV-4 with upper GI tract cancer. BPV E5 is a small hydrophobic protein localised in the endoplasmic reticulum (ER) and Golgi apparatus (GA). E5 is the major transforming protein of BPVs, capable of inducing cell transformation in cultured mouse fibroblasts and, in cooperation with E7, in primary bovine cells. E5-induced cell transformation is accompanied by activation of several cellular protein kinases, including growth factor receptors, and alkalinisation of endosomes and GA. We have reported that BPV E5 causes swelling and fragmentation of the GA and extensive vacuolisation of the cytoplasm. We now show that E5 from both BPV-1 and BPV-4 disturbs the actin cytoskeleton and focal adhesions in transformed bovine cells, where these morphological and behavioural characteristics are accompanied by hyperphosphorylation of the cellular phosphotyrosine kinase c-src. Both BPV-1 and BPV-4 E5 increase the motility of transformed mouse cells, but only BPV-1 E5 causes transformed mouse cells to penetrate a matrigel matrix. BPV-1 transformed mouse cells, but not BPV-4 transformed mouse cells, have hyperhpsphorylated c-src

    The NF2 tumor suppressor regulates microtubule-based vesicle trafficking via a novel Rac, MLK and p38SAPK pathway

    Get PDF
    Ā© Macmillan Publishers, 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Oncogene 32 (2013): 1135ā€“1143, doi:10.1038/onc.2012.135.Neurofibromatosis type 2 patients develop schwannomas, meningiomas and ependymomas resulting from mutations in the tumor suppressor gene, NF2, encoding a membrane-cytoskeleton adapter protein called merlin. Merlin regulates contact inhibition of growth and controls the availability of growth factor receptors at the cell surface. We tested if microtubule-based vesicular trafficking might be a mechanism by which merlin acts. We found that schwannoma cells, containing merlin mutations and constitutive activation of the Rho/Rac family of GTPases, had decreased intracellular vesicular trafficking relative to normal human Schwann cells. In Nf2āˆ’/āˆ’ mouse Schwann (SC4) cells, re-expression of merlin as well as inhibition of Rac or its effector kinases, MLK and p38SAPK, each increased the velocity of Rab6 positive exocytic vesicles. Conversely, an activated Rac mutant decreased Rab6 vesicle velocity. Vesicle motility assays in isolated squid axoplasm further demonstrated that both mutant merlin and active Rac specifically reduce anterograde microtubule-based transport of vesicles dependent upon the activity of p38SAPK kinase. Taken together, our data suggest loss of merlin results in the Rac-dependent decrease of anterograde trafficking of exocytic vesicles, representing a possible mechanism controlling the concentration of growth factor receptors at the cell surface.This work was supported by NIH R01 CA118032 (to NR), and MBL research fellowships (to NR and GM), NIH R01 NS23868 (to STB)

    Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

    Get PDF
    This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes

    Competition between Pomeranchuk instabilities in the nematic and hexatic channels in a two-dimensional spinless Fermi fluid

    Full text link
    We study the competition between the nematic and the hexatic phases of a two-dimensional spinless Fermi fluid near Pomeranchuk instabilities. We show that the general phase diagram of this theory contains a bicritical point where two second order lines and a first order nematic/hexatic phase transition meet together. We found that at criticality, and deep inside the associated symmetry broken phases, the low energy theory is governed by a dissipative cubic mode, even near the bicritical point where nematic and hexatic fluctuations cannot be distinguished due to very strong dynamical couplings.Comment: 7 pages, 2 figures. Shorter and improved version, as will appear in PR
    • ā€¦
    corecore