25 research outputs found

    The interior of axisymmetric and stationary black holes: Numerical and analytical studies

    Get PDF
    We investigate the interior hyperbolic region of axisymmetric and stationary black holes surrounded by a matter distribution. First, we treat the corresponding initial value problem of the hyperbolic Einstein equations numerically in terms of a single-domain fully pseudo-spectral scheme. Thereafter, a rigorous mathematical approach is given, in which soliton methods are utilized to derive an explicit relation between the event horizon and an inner Cauchy horizon. This horizon arises as the boundary of the future domain of dependence of the event horizon. Our numerical studies provide strong evidence for the validity of the universal relation \Ap\Am = (8\pi J)^2 where \Ap and \Am are the areas of event and inner Cauchy horizon respectively, and JJ denotes the angular momentum. With our analytical considerations we are able to prove this relation rigorously.Comment: Proceedings of the Spanish Relativity Meeting ERE 2010, 10 pages, 5 figure

    Universal properties of distorted Kerr-Newman black holes

    Full text link
    We discuss universal properties of axisymmetric and stationary configurations consisting of a central black hole and surrounding matter in Einstein-Maxwell theory. In particular, we find that certain physical equations and inequalities (involving angular momentum, electric charge and horizon area) are not restricted to the Kerr-Newman solution but can be generalized to the situation where the black hole is distorted by an arbitrary axisymmetric and stationary surrounding matter distribution.Comment: 7 page

    Non-existence of stationary two-black-hole configurations

    Get PDF
    We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. To answer the question we formulate a boundary value problem for two separate (Killing-) horizons and apply the inverse (scattering) method to solve it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black hole criterion, we prove the non-existence of the equilibrium situation in question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue (GeRG journal

    Non-existence of stationary two-black-hole configurations: The degenerate case

    Full text link
    In a preceding paper we examined the question whether the spin-spin repulsion and the gravitational attraction of two aligned sub-extremal black holes can balance each other. Based on the solution of a boundary value problem for two separate (Killing-) horizons and a novel black hole criterion we were able to prove the non-existence of the equilibrium configuration in question. In this paper we extend the non-existence proof to extremal black holes.Comment: 18 pages, 2 figure

    Bounds on the force between black holes

    Full text link
    We treat the problem of N interacting, axisymmetric black holes and obtain two relations among physical parameters of the system including the force between the black holes. The first relation involves the total mass, the angular momenta, the distances and the forces between the black holes. The second one relates the angular momentum and area of each black hole with the forces acting on it.Comment: 13 pages, no figure

    Regularity of Cauchy horizons in S2xS1 Gowdy spacetimes

    Full text link
    We study general S2xS1 Gowdy models with a regular past Cauchy horizon and prove that a second (future) Cauchy horizon exists, provided that a particular conserved quantity JJ is not zero. We derive an explicit expression for the metric form on the future Cauchy horizon in terms of the initial data on the past horizon and conclude the universal relation A\p A\f=(8\pi J)^2 where A\p and A\f are the areas of past and future Cauchy horizon respectively.Comment: 17 pages, 1 figur

    Smooth Gowdy symmetric generalized Taub-NUT solutions

    Full text link
    We study a class of S3 Gowdy vacuum models with a regular past Cauchy horizon which we call smooth Gowdy symmetric generalized Taub-NUT solutions. In particular, we prove existence of such solutions by formulating a singular initial value problem with asymptotic data on the past Cauchy horizon. The result of our investigations is that a future Cauchy horizon exists for generic asymptotic data. Moreover, we derive an explicit expression for the metric on the future Cauchy horizon in terms of the asymptotic data on the past horizon. This complements earlier results about S2xS1 Gowdy models.Comment: 56 pages, 1 figure. The new version contains a detailed explanation of the Fuchsian method on the 2-spher

    Gravitating Opposites Attract

    Full text link
    Generalizing previous work by two of us, we prove the non-existence of certain stationary configurations in General Relativity having a spatial reflection symmetry across a non-compact surface disjoint from the matter region. Our results cover cases such that of two symmetrically arranged rotating bodies with anti-aligned spins in n+1n+1 (n3n \geq 3) dimensions, or two symmetrically arranged static bodies with opposite charges in 3+1 dimensions. They also cover certain symmetric configurations in (3+1)-dimensional gravity coupled to a collection of scalars and abelian vector fields, such as arise in supergravity and Kaluza-Klein models. We also treat the bosonic sector of simple supergravity in 4+1 dimensions.Comment: 13 pages; slightly amended version, some references added, matches version to be published in Classical and Quantum Gravit
    corecore