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Abstract. We investigate the interior hyperbolic region of axisymmetric and stationary black holes
surrounded by a matter distribution. First, we treat the corresponding initial value problem of the hyperbolic
Einstein equations numerically in terms of a single-domain fully pseudo-spectral scheme. Thereafter, a
rigorous mathematical approach is given, in which soliton methods are utilized to derive an explicit relation
between the event horizon and an inner Cauchy horizon. This horizon arises as the boundary of the future
domain of dependence of the event horizon. Our numerical studies provide strong evidence for the validity
of the universal relatiom™ A~ = (87.J)? where AT and A~ are the areas of event and inner Cauchy
horizon respectively, and denotes the angular momentum. With our analytical considerations we are able
to prove this relation rigorously.

1. Introduction

Axisymmetric and stationary black hole space-times are characterized by the existence of two Killing
vectors¢ andn. Outside the black hole, these vectors can always be linearly combined to form a time-
like vector. In contrast, any such non-trivial linear combination, taken in sategor neighborhood

of the event horizor{ ™, inevitably leads to a space-like vector. The corresponding Einstein equations,
expressed in Boyer-Lindquist-type coordinates, are elliptic in the black hole’s exterior and hyperbolic in
its interior. It has been shown in [1] that for non-vanishing angular momeutoifrthe black hole, there
always exists a regular boundary of the future domain of dependence of the event horizon, the ‘inner
Cauchy horizonH ™.

In this contribution, we investigate the interior region of axisymmetric and stationary black holes
which are surrounded by a matter distribution. The Einstein field equations are considered in Boyer-
Lindquist-type, as well as Weyl coordinates, where they possess a well-defined behavior at the horizons.
Note that in Boyer-Lindquist-type coordinates, the mathematical form of the field equations is the same
atH* andH ™.

In section 2 we apply a fully pseudo-spectral method and solve the degenerate hyperbolic Einstein
equations as an initial value problem. We expand the field quantities with respect to both spatial and time
coordinates in terms of Chebyshev polynomials. Starting at the past Cauchy harizame evolve the
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data into the black hole interior up to the future Cauchy harizo . The data, found in this manner at
'H~, obey the remarkable property
ATAT = (87J)?, (1)

where AT and A~ are the areas of event and inner Cauchy horizon respectively. The numerical
solutions possess the extreme accuracy known for spectral methods when applied to elliptic problems.
In particular, the relation (1) was found to be valid up to 12 decimal digits.

In section 3 we review analytical work through which (1) was proved rigorously [1]. The
corresponding techniques are based on ‘Bécklund transformations’, a method known from soliton
theory. We conclude this article with a discussion of generalized and related black hole properties in
axisymmetry.

2. Numerical studies
In Boyer-Lindquist-type coordinatg®, 0, ¢, t), the metric becomes singular &t= +ry,,

ds? = ji dr? d6? 0(dp? — wdt 1R = 12 (2)
§ Rz_r2+ + @sin? ( —w )—a( —rp)dt”,

where+r, denote the coordinate locations of the two horizatis. The interior hyperbolic region of
the black hole is characterized by

R e (_Tharh)v NS [0777] : (3)

Here, the metric coefficients, w, & depend onR andf only and are regular a® = +r,, (see [2, 3]).
The corresponding hyperbolic Einstein equations read as follows:

N 2
(R = )i + 2R+ o + g0t = 1 2 sing “o s
h)U,RR T 2RU R + U g9 + U g CO = 5 sin w2 Rt = o ’ 4
(R* — 1)) (w,rr + dw gl R) + wgy = —wg(3cotd+4ig), (5)
_ _ _ ﬁ2 ) w2
(R2 - Tﬁ)M,RR +RaRr+ gy = 6 sin?6 | w? Rt 553 7 .0 + Rii g
—(B? —ri})a’s — u,e(U,e + cot 6), (6)

whered := J1In (4/dy) and fi :== 31n (/af) with 43 = 4(R = m,,0 = 0)'. Note thati does
not enter in the equations (4, 5). An explicit solution of this system is given by the Kerr metric which
describes a single rotating black hole in vacuum.

At R = +ry, the metric potentials have to obey the following boundary conditions (see [2, 3])

w = constant= w*
HE (7)
+2rpURr + Ugg + Ugcotd =1 — 8u w2Rsm29

with the horizon angular velocities*.

! Here we choose the north pole valiig of @ as normalization constant. It remains positive and finite even in the degenerate
limit r, — 0.
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Expressions for the black hole angular momentiirard horizon areasi® have been discussed in
[2, 3]. They are given by

™

1 asb
J = o N’dSg, = 16 U WR|Hi sin6 d#, (8)
HE
AT = 271/\/uu‘Hism9d9—47ruN, (9)

where the ‘north pole’ values df are denoted by
0% = (R = £y, 0 = 0).
Note that, for the area formula (9), we used the following relations:

At the HorizonsH* (R = +r,) : /it = constant
(10)

Atthe Rotation axigsind =0) : 4 = 4.

In our numerical scheme we solve the equations (4) and (5). The corresponding solutions provide us
with the relevant information to computeand A™*.
As a first step, we express the metric coefficianendw in terms of auxiliary potential’ and {2:

W(R,0) = a"(0)+ (R—rm)U(R,0)
w(R,0) = wh+ (R—m)wh(®)+ (R—m)*02(R,0).

In this ansatz we take into account the boundary conditiof? = r,,60) = w*. We prescribe freely a
set of ‘initial’ data{a* (6),w™, w} ()} which is then evolved fron = r, into the black hole interior
up to R = —ry, via the equations (4) and (5) (see figure 1). Note that the second boundary condition in
(7) fixes the first ‘time’ derivativei z(ry, 6) in terms ofa™(0) andw, (6), and hencei z(ry, ) cannot
be prescribed freely.

We have chosen flly pseudo-spectral scheme [4] for the numerical integration of (4) and (5). In
practice, we expand the functiobsand {2 with respect to Chebyshev polynomials:

U =~ ch < > k<29—1> (11)

§=0 k=0

S5 (8 ()

§=0 k=0

2

Q

and consider the field equations onrax n-‘spectral grid’ with Gauss-Lobatto gridpoint®;, 6;,) (see
figure 1),

wk
2(n—1)

Rj =y, cos 05, = sin? (J,k=0,....,n—1). (13)

s
n—1"
The pseudo-spectral collocation point method provides an approximation of the values

Ui, =U (R;,0k) , 25 = 2(R;,0) (14)
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‘Time’ direction

R

Figure 1. The interior hyperbolic black hole region with pggt = ry,) and future & = —ry,) Cauchy
horizonsH*. The metric is determined as the solution to an initial value problem startiRg-at-, and
evolving up toR = —ry,. We indicate the location of the Gauss-Lobatto gridpoints on the spectral grid
which is used in the pseudo-spectral collocation point method.

which we collect in then2-dimensional vector

Uoo
00

Unn

2NN
From any such vectdt the spectral coefﬁcientsg.g) andcg.f) of U and {2 can be computed. Moreover,
the corresponding coefficients of first and second derivative#/ aind (2 are easily determined.
Returning from coefficient to physical space, we can build vedigis . ., f gy containing the values
of first and second derivativés r, {2 g, ..., U g9, {2 99 at all collocation point§R;, 0y).
Now consider the system (4, 5) @;, 6;) and insert the relevant componentsfof g, . . ., f gy into
these equations. We obtain a non-linear algebraic system of equations of the form

F(f) =0, (16)

where

F = : . a7

U
Fn

2)
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Figure 2. Initial data for Kerr and non-Kerr solution (upper panels) and corresponding values at the
future Cauchy horizof{~ (lower panels).

Here, FJ.(U) and Fj(,f) denote the difference of left and right hand sides of equations (4) and (5)

respectively, taken at the collocation poifR;, §;). The solutionf of the discrete algebraic system
(16) describes the spectral approximation of the solution to our hyperbolic initial value problem.

We find the vectof using a Newton-Raphson scheme,

f= lim £,, fuo =5 —[JE)] " F (), (18)
where the Jacobian matrix is given by
OF
J= o (29)

Note that for the convergence of the scheme a ‘good’ initial gfigss necessary. For the first
calculation, we take the corresponding coefficients of the Kerr solution for some specific parameters (say
J andA™). We may then depart from the Kerr solution and gradually approach some new solution with
a non-Kerr initial data sefa ™ (0),w™, wi(0)}.

In the following example we start with a Kerr black hole in which we prescribe the specific angular
momentumJ/M? = 0.8, where M denotes the black hole mass. As explained above, we gradually
depart from this solution and approach an initial data set in which we replace the initial functiéi
by a constant (we také™(¢) = 0.65) but maintainw™ andw,(#) as previously determined for the
Kerr case ofJ/M? = 0.8. The initial dataa™*(¢) andw},(9), as well as the functiong andw, at
‘H—, are displayed in figure 2. Here, the values at the inner Cauchy hoRzen-r, emerge from the
pseudo-spectral calculation.
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Figure 3. Numerical test of relation (1) for the non-Kerr example displayed in figure (2).

The numerical test of relation (1) is exhibited in figure 3. It shows a convergence plot of the expression
|1 — (87J)? /(AT A™)| for our sample non-Kerr solution. We obtain a confirmation of the validity of (1)
by 12 relevant decimal digits which is equivalent to the numerical round-off error.

3. Analytical studies
This section about the analytical study of the interior hyperbolic black hole region, including the rigorous
derivation of the equality (1), is a brief summary of earlier work that has been presented in [1].

3.1. Weyl coordinates
As a first step towards a strict mathematical treatment in terlBaclund transformationsve introduce
canonical Weyl coordinate®, ¢, o, t) in a small exterior vacuum vicinity of the black héle

p® = 4(R* — r})sin?#, ¢ = 2R cos¥. (20)
The corresponding line element reads as follows:
ds? =e 2V [e%(dp2 +d¢?) + p2d<,02] — Y (dt + adyp)?. (21)
Here, the metric potentials, k£ anda are functions op and¢. The rotation axissin § = 0) is given by:
p=0, ] = 2ry, (22)
and the exterior event horizdd™ is located at
p=0,—2r, << 2. (23)

The event horizon is a degenerate surface in Weyl coordinates. As the interior region is characterized
by |R| < r,, the corresponding Weyl coordingteassumes imaginary values there. This means that the
hyperbolic black hole region cannot be accessed in Weyl coordinates (see figure 4).

2 We assume that for physically reasonable types of matter surrounding our stationary black hole, the immediate vicinity of
the event horizon must be vacuum, see. e. g. discussion in [3].
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Figure 4. Portion of a black hole space-time in Weyl coordinates (left panel) and Boyer-Lindquist-type
coordinates (right panel) (figure taken from [1]).

3.2. The Ernst equation
The complex Ernst potentigl combines the metric functiorig andb,

f=eY 4ib, (24)
where the twist potentidl is related to the coefficient via the relations:

a,= pe_4Ub,<, ac = —pe_4Ub7p. (25)
In Boyer-Lindquist-type coordinates, this relation reads as:
ap=—2 Sin96_4Ub79, ap = 2(R? — rﬁ) sin@e_wb,R. (26)

The vacuum Einstein equations (which are valid in a vicinit§+of) are equivalent to thErnst equation
[5] which reads in Weyl coordinates as

1
RE) (foo T fcc+—F) = 5+ F2 27)
P
and in Boyer-Lindquist-type coordinates:
(Rf) [(R* = 1) frr + 2Rf R+ foo + cotOf 9] = (R* — i) f R + fo- (28)

Note that because of the degeneracyrof in Weyl coordinates, the potentidlis, for p = 0, only a

C°-function in terms of. In contrast, for a regular black holg,is analytic with respect to the Boyer-
Lindquist-type-coordinate& andé.

3.3. Béacklund transformation

The Ernst equation is, when written in Weyl coordinates, the integrability condition of an associated
linear matrix problem [6, 7]. This is the great advantage of the Weyl coordinates with respect to the
Boyer-Lindquist-type coordinates. The existence of this linear problem enables us to apply methods
known from soliton theory. In this contribution, we are particularly interested in the so-called Backlund
transformations through which new solutions from previously known ones are created [8]-[12]. As an
example, the Kerr solution describing a rotating black hole in vacuum can be constructed from the flat
Minkowski metric in this manner (see e. g. [10]).

In the following we use the Backlund transformation technique in order to write an arbitrary regular
axisymmetric, stationary black hole solutighin terms of an auxiliary ‘seed’ potentigy. Here, f
describes a space-time without a black hole but with a completely regular central vacuum region. More
specifically, fy is characterized by the following properties:
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(i) fois defined in a vicinity of the axis sectign= 0, || < 2ry,.
(ii) In this vicinity, fo is an analytic function op and¢{ and anevenfunction of p.
(iii) For p =0and|¢| < 2ry, the values off; in terms of the event horizon values pfare given by

i [QTh(bE + bé’_) — (bii]_ — bg)d f + 4Thb§b§_

Jo= drp f =1 [2m(by +bg) + (b —0)¢]

(29)

whereby = b(p = 0,¢ = 2ry,) andb = b(p = 0,( = —2ry,) denote the twist potential values at
north and south poles 6{+.

Now, from this Ernst potentiaf, the original potentialf can be recovered by means of an appropriate
Backlund transformation of the following forin

fo 1 1
fo 041;\1 012;\2
fo A A
F=17 11 12 ’ (30)
-1 041)\1 042)\2
1 A2 )\
where
K, —iz .
J= KJ +iz’ j=1,2, K1 = —2r, Koy =2y (31)
J

with the complex coordinates= p + i(, Z = p — i(, anda;y, oy are solutions to the Riccati equations

fo,z fo.

Qe = —(Aja§+aj)f0 f0+( N (32)
= LZ . 1 fOz
@z </\ja] +%> f0+f0 < > fo+ fo (33)
with
Ozjdjzl. (34)

For a regular black holgf, is analytic with respect t& andcos # in an exterior vicinity ofH{*. Hence,
we can expand it analytically into anterior vicinity of H*. A theorem by Chréciel (theorem 6.3 in
[13]) assures that the potentiflexists as a regular solution of the interior Ernst equation for all values

(R,cos8) € (—rp, ) x [—1,1]. (35)

This region only excludes the Cauchy horizen (R = —ry,).

In the following derivation of the expression f@rat the interior boundary® = —r},, a crucial role is
played by the fact thaf, is evenin p. In terms of the Boyer-Lindquist-type coordinates, this means that
fo is an analytic function of B? — r2) sin?¢ and R cos 6. The analytic expansion gf, into the region
R < ry, retains this property. Hencgy taken at the boundaries of the inner hyperbolic region, can be
expressed in terms ¢f taken atR = ry,. Specifically we obtain

fo(R= —ry,co86) = fo(R= +ry,—cosf) = fo(p=0,{ = —2rycosb). (36)

Also, it follows that fj is regularly defined in a sufficiently small vicinity of the boundary of the interior
region, see figure 5.

From the values of at these boundaries we can constrfion 7~ via the Backlund transformation,
which is stated in the following.

3 A bar denotes complex conjugation.
* We obtain Chréciel’s form of the line element by substitutitgy= 1, cos 7' andf = .
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Figure 5. The seed functiorfy can be regularly defined in at least the grey areas (figure taken from [1]).

Theorem 3.1. Any Ernst potentialf of a regular, axisymmetric, and stationary black hole space-time
with angular momentuny # 0, can be regularly extended into the interior of the black hole up to
and including an interior Cauchy horizon, described By= —r), in Boyer-Lindquist-type coordinates
(R, 0). The values of on the Cauchy horizon are given by

1[51 + 09 — (51 — 52) CcOos 9] f(](R = I'p, — COS 9) + 26199

= — 9 -
f(R Th, €S 0) 2fo(R =1y, —cos @) —i[d + 02 + (01 — d2) cos 0]

(37)

with

5 = bg (b — b)) + 265 (b.ge)%; 5, — b (b — b)) + 268 (b.gp) %
by — g +2(bg0) % by — b3+ 2(bge)%

where the scriptst’ and‘N/S’ indicate that the corresponding valuebr its second)-derivative has

to be taken at the event horizon’s north or south pole respectively. The values of the seed gglation
R = ry, follow via (29) fromf on the event horizon.

(38)

Note that, for/ — 0, the Cauchy horizon becomes singular. In this case we Jdayg — oo and
consequentlyf|,,— diverges.

By virtue of the above theorem we are able to write the inner Cauchy horizondaremmpletely
in terms of Ernst expressions taken at the event hortzon As discussed in [1], the universal equality
(1) arises in this manner. Moreover, the vanishingdofis obtained in the limit/ — 0, i. e. when the
Cauchy horizon becomes singular.

4. Discussion

In this contribution we discussed the interior hyperbolic region of axisymmetric and stationary black
holes which are surrounded by a matter distribution. We first looked at the corresponding degenerate
hyperbolic Einstein equations in terms of fully pseudo-spectral methods, and confirmed the validity of
relation (1) to high precision.

In the second part of the article, we used the Backlund technique in order to write the black hole
metric in terms of an auxiliary seed potenti&l that does not describe a black hole but a completely
regular central region. We first derived simple relations between the valugsabfthe boundaries of
the interior region, and then carried these relations over to the original black hole metric by virtue of an
appropriate Backlund transformation. A particular consequence of this relation is the universal equality
Q).

Note that the key point for this method to work is the fact that the two horiz6hsire connected by
specific axis sections. Indeed, the linear matrix problem associated to the Ernst equation (see discussion
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at the beginning of section 3.3) simplifies considerablyfet 0, that is, on the two horizon&/*, and

on the rotation axiss{n # = 0). An alternative derivation, analyzing the linear matrix problem directly
at the several sections wheve= 0, was carried out in [14, 15] for the Einstein-Maxwell field. In that
work, the corresponding steps yield the more general formula

(87J)2 + (41Q?)? = AT A~

where( is the electric charge of the black hole.

It is interesting to remark that there are associatexfjualities relating angular momentum and
area of the black hole. In [16] (see also [17]) it was shown thastdrextremablack holes (which
possess trapped surfaces in every sufficiently small interior vicinity of the event horizon), the following
inequalities hold:

A™ < \/(87J)2 + (4mQ2)2 < AT,

In the case of pure Einsteinian gravity, this relation was proved in a different context, namely for non-
stationary, axisymmetric, vacuum space-times [18]. In particular, the local inequality8r|.J| was
shown, whereA and J are the area and angular momentum of any axially symmetric closed stable
minimal surface in an axially symmetric maximal initial data.
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