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Abstract We resume former discussions of the question, whether the spin–spin
repulsion and the gravitational attraction of two aligned black holes can balance each
other. To answer the question we formulate a boundary value problem for two separate
(Killing-) horizons and apply the inverse (scattering) method to solve it. Making use
of results of Manko, Ruiz and Sanabria-Gómez and a novel black hole criterion, we
prove the non-existence of the equilibrium situation in question.

Keywords Inverse scattering method · Spin-spin repulsion · Double-Kerr-NUT
solution · Sub-extremal black holes

1 Introduction

This paper is meant to contribute to the present discussion about the existence or
non-existence of stationary equilibrium configurations consisting of separate bodies
at rest. Hermann Weyl, whom Jürgen Ehlers admired especially, was the first person to
consider the problem of two separate static (axisymmetric) bodies in equilibrium [27].
To mention only one modern advancement in this field we refer to a paper by Beig
and Schoen [5], who were able to prove a non-existence theorem for a reflectionally
symmetric static n-body configuration.
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2114 G. Neugebauer, J. Hennig

Fig. 1 Illustration of the
two-black-hole equilibrium
situation in Weyl coordinates.
The event horizons H1 and H2
of the two black holes are
located in the intervals [K2, K1]
and [K4, K3] on the ζ-axis,
respectively. The remaining
parts A ±, A 0 of the ζ-axis
correspond to the rotation axis

Our intention is to involve the interaction of the angular momenta of rotating bodies
(“spin–spin interaction”) which could generate repulsive effects compensating the
omnipresent mass attraction. A characteristic example for such a stationary config-
uration could be the equilibrium between two aligned rotating black holes. We will
present and review a chain of old and new arguments which finally forbid the equilib-
rium situation.

Our argumentation is based on a boundary value problem for two separate (Kill-
ing-) horizons (see Fig. 1) and the characterization of sub-extremal black holes by
Booth and Fairhurst [6] and follows the ideas of Manko and Ruiz [19] who solved the
equilibrium problem for the so-called double-Kerr solution.

The double-Kerr (more precisely: double-Kerr-NUT) solution, first derived in [15,
21], is a seven parameter solution constructed by a two-fold Bäcklund transformation
of Minkowski space. Since a single Bäcklund transformation generates the Kerr-NUT
solution that contains, by a special choice of its three parameters, the stationary black
hole solution (Kerr solutions) and since Bäcklund transformations act as a “nonlinear”
superposition principle, the double-Kerr-NUT solution was considered to be a good
candidate for the solution of the two horizon problem and extensively discussed in
the literature [8,12–19,26,28]. However, there was no argument requiring that this
particular solution be the only candidate. In this paper we will remove this objection
and show that the discussion of a boundary value problem for two separate hori-
zons necessarily leads to the double-Kerr-NUT solution. Thus we can make use of
the equilibrium conditions for this solution which ensure that the intervals A +, A 0,
A − (see Fig. 1) are regular parts of the axis of symmetry. After a too restrictive
ansatz in [15], Tomimatsu and Kihara [14,26] derived and discussed a complete set of
equilibrium conditions on the axis. Reformulations and numerical studies by Hoens-
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Non-existence of stationary two-black-hole configurations 2115

elaers [13] made plausible that the two gravitational sources (black hole candidates)
of the double-Kerr-NUT solution (located at the intervals � = 0, K1 ≥ ζ ≥ K2 and
K3 ≥ ζ ≥ K4) cannot be in equilibrium if their Komar masses are positive. The
first decisive step toward prove the Hoenselaers conjecture was taken by Manko et
al. [18], who derived an explicit and easily applicable form of the Tomimatsu-Kihara
equilibrium conditions and, as an important complement, analytical formulae for the
Komar masses and angular momenta of the gravitational sources. Manko and Ruiz
[19] completed their non-existence proof by showing that the equilibrium conditions
for the double-Kerr-NUT solution are indeed violated for positive Komar masses. This
is, however, a critical point of their analysis. To the best of our knowledge there is no
argument in favour of the positiveness of the Komar mass. (On the contrary, Ansorg
and Petroff [1] have given a convincing counterexample.)

In this paper we replace the Komar mass inequality (positivity of the Komar mass
of each black hole) by an inequality connecting angular momentum and horizon area
[9]. This relation is based on the causal structure of trapped surfaces in the interior
vicinity of the event horizon [6]. In this way we can complete the no-go theorem,
avoiding more laborious investigations of the domain outside the horizons and off the
axis of symmetry (e.g. the search for singular rings or other singularities—in Sect. 5.2
we will return to that question).

2 The boundary value problem

2.1 The boundary conditions

The exterior vacuum gravitational field of axisymmetric and stationary gravitational
sources can be described in cylindrical Weyl–Lewis–Papapetrou coordinates by the
line element

ds2 = e−2U
[
e2k(d�2 + dζ2) + �2dϕ2

]
− e2U (dt + adϕ)2, (1)

where the “Newtonian” gravitational potential U , the “gravitomagnetic” potential a
and the “superpotential” k are functions of � and ζ alone. Figure 1 shows the bound-
aries of the vacuum region: A +, A 0, A − are the regular parts of the axis of symmetry,
H1 and H2 are Killing horizons and C stands for spatial infinity. Regularity of the
metric along A +, A 0, A − means elementary flatness and uniqueness on the axis of
symmetry,

A ±,A 0 : a = 0, k = 0. (2)

The spacetime has to be flat at large distances from the horizons,

C : U → 0, a → 0, k → 0, (3)

i.e. the line element (1) takes a Minkowskian form in cylindrical space (�, ζ,ϕ)- time
(t) coordinates.
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2116 G. Neugebauer, J. Hennig

The metric (1) allows an Abelian group of motions G2 with the generators (Killing
vectors)

ξi = δi
t , ξiξi < 0 (stationarity), (4)

ηi = δi
ϕ, ηiηi > 0 (axisymmetry), (5)

where the Kronecker symbols δi
t and δi

ϕ indicate that ξi has only a t-component

whereas ηi points in the azimuthal ϕ-direction along closed circles. Obviously,

e2U = −ξiξi , a = −e−2U ηiξ
i (6)

is a coordinate-free representation of the two relativistic gravitational potentials U and
a with the boundary values (2), (3).

In stationary and axisymmetric spacetimes, the event horizon of a black hole is a
Killing horizon which can be defined by a linear combination L of ξ and η,

L = ξ + Ωη, (7)

where Ω is a constant. A connected component of the set of points with e2V :=
−(L , L) = 0, which is a null hypersurface, (de2V , de2V ) = 0, is called a Killing
horizon H (L),

H (L) : e2V = −(L , L) = 0, (de2V , de2V ) = 0. (8)

Since the Lie derivative LL of e2V vanishes, we have (L , de2V ) = 0. Hence, L and
e2V being null vectors on H (L) are proportional to each other,

H (L) : de2V = −2κL . (9)

Using the field equations one can show that the surface gravity κ is a constant on
H (L). In Weyl–Lewis–Papapetrou coordinates the event horizon degenerates to a
“straight line” and covers a ζ-interval at � = 0 [7]. To formulate boundary conditions
on the horizons H1 and H2 (see Fig. 1) we make use of (6) and (7) to express e2V in
terms of e2U , a and �,

H1 : e2V1 := e2U
[
(1 + Ω1a)2 − Ω2

1�2e−4U
]

= 0, � = 0, K1 ≥ ζ ≥ K2,

(10)

H2 : e2V2 := e2U
[
(1 + Ω2a)2 − Ω2

2�2e−4U
]

= 0, � = 0, K3 ≥ ζ ≥ K4.

(11)

Ω1, Ω2 are the constant angular velocities of the horizons H1, H2, respectively.
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Non-existence of stationary two-black-hole configurations 2117

2.2 The field equations

The vacuum Einstein equations for the metric potentials U , a, k are equivalent to the
Ernst equation

(� f )

(
f,�� + f,ζζ + 1

�
f,�

)
= f 2

,� + f 2
,ζ (12)

for the complex function

f (�, ζ) = e2U (�,ζ) + ib(�, ζ), (13)

where b replaces a via

a,� = �e−4U b,ζ , a,ζ = −�e−4U b,� (14)

and k can be calculated from

k,� = �

[
U 2

,� − U 2
,ζ + 1

4
e−4U (b2

,� − b2
,ζ)

]
, (15)

k,ζ = 2�

[
U,�U,ζ + 1

4
e−4U b,�b,ζ

]
. (16)

As a consequence of the Ernst equation (12), the integrability conditions a,�ζ = a,ζ�

and k,�ζ = k,ζ� are satisfied such that the metric potentials a and k may be calculated
via line integration from the Ernst potential f . Thus the boundary value problem for
the vacuum Einstein equations reduces to a boundary value problem for the Ernst
equation. However, we have to cope with non-local boundary conditions for the Ernst
potential, see (2), (3), (14), (15), (16). Fortunately, these boundary conditions are well-
adapted to the “inverse method”, which will be applied to solve the boundary value
problem.

2.3 The inverse method

The inverse (scattering) method first applied to solve initial value problems of special
classes of non-linear partial differential equations in many areas of physics (Korteweg–
de Vries equation in hydrodynamics, non-linear Schrödinger equation in non-linear
optics, etc.) is based on the existence of a linear problem (LP) whose integrability con-
dition is equivalent to the non-linear differential equation. Luckily, the Ernst equation
has an LP too, so one can try to tackle boundary value problems for rotating objects
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2118 G. Neugebauer, J. Hennig

including black holes. We use the LP [20,22]

Φ,z =
[(

B 0
0 A

)
+ λ

(
0 B
A 0

)]
Φ,

(17)

Φ,z̄ =
[(

Ā 0
0 B̄

)
+ 1

λ

(
0 Ā
B̄ 0

)]
Φ,

where Φ(z, z̄, λ) is a 2 × 2 matrix depending on the spectral parameter

λ =
√

K − iz̄

K + iz
(18)

as well as on the complex coordinates z = � + iζ, z̄ = � − iζ, whereas

A = f,z
f + f̄

, B = f̄,z
f + f̄

(19)

and the complex conjugate quantities Ā, B̄ are functions of z, z̄ (or �, ζ) alone and do
not depend on the constant parameter K . From the integrability condition Φ,zz̄ = Φ,z̄z

and the relations

λ,z = λ

4�
(λ2 − 1), λ,z̄ = 1

4�λ
(λ2 − 1) (20)

it follows that the λ-independent coefficients of a matrix polynomial in λ have to van-
ish. The result is the Ernst equation (12). Vice versa, the matrix Φ calculated from (17)
does not depend on the path of integration if f is a solution to the Ernst equation. The
idea of the inverse (scattering) method is to construct Φ, for fixed but arbitrary values
of z, z̄, as a holomorphic function of λ and to calculate f (�, ζ) from Φ. To obtain the
dependence on λ for the two-horizon problem we have to integrate the linear system
(17) along the dashed line D = A − ∪ H2 ∪ A 0 ∪ H1 ∪ A + ∪ C making use of
the boundary conditions (2), (3), (10), (11). As was shown in [23,24] (see Eqs. (34),
(45), (57), (58) in [24]) the result of the integration is a matrix representation of the
axis values of the Ernst potential f +(ζ) ≡ f +(� = 0, ζ) = e2U+(ζ) + ib+(ζ) on A +
in terms of the parameters Ki (i = 1, . . . , 4), fi = f (� = 0, ζ = Ki ) and the angular
velocities Ω1 = Ω(1) = Ω(2), Ω2 = Ω(3) = Ω(4):

N =
4∏

n=1

(
1 + Fn

2iΩ(n)(ζ − Kn)

)
, (21)

where

N := e−2U+(ζ)

(
1 −ib+(ζ)

ib+(ζ) f +(ζ) f̄ +(ζ)

)
(22)
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Non-existence of stationary two-black-hole configurations 2119

and

Fn := (−1)n

(
fn −1

f 2
n − fn

)
. (23)

Obviously, the sum of the off-diagonal elements of N has to vanish, N12 +N21 = 0,
whence

tr

[(
0 1
1 0

) 4∏
n=1

(
1 + Fn

2iΩ(n)(ζ − Kn)

)]
= 0. (24)

Since this equation holds identically in ζ, one obtains four constraints among Ω1, Ω2;
K3 − K4, K2 − K3, K1 − K2; f1,… f4. Particularly, the 1/ζ-term yields

Ω1

Ω2
= f 2

1 − f 2
2

f 2
4 − f 2

3

. (25)

Hence the three remaining constraints enable us to express the three similarity variables
Ω1(K3 − K4), Ω1(K1 − K2), Ω1(K2 − K3), or, alternatively, Ω2(K3 − K4), Ω2(K1 −
K2), Ω2(K2−K3), in terms of the four values of the Ernst potential f1, . . . , f4. It turns
out that the constancy of the surface gravity, or, alternatively, the condition k = 0 on
A ±, A 0, gives rise to one further constraint. Since the axis values f +(ζ) determine
the solution of the Ernst equation uniquely, one may expect a three (real) parameter
solution of the two-horizon problem (see remark on Eq. (50)).

2.4 The double-Kerr-NUT solution

According to (21) and (22), the axis potential f +(ζ) is a quotient of two polynomials
in ζ. To determine the degree of the polynomials we compare the polynomial structure
of the matrix elements (22),

e2U+(ζ) = (ζ − K1)(ζ − K2)(ζ − K3)(ζ − K4)

p4(ζ)
, (26)

ib+(ζ) = i
p2(ζ)

p4(ζ)
, (27)

f +(ζ) f +(ζ) = π4(ζ)

p4(ζ)
, (28)

where p4, π4 are real normalized polynomials of the fourth degree (the fourth power
coefficient is equal to one) and the real polynomial p2(ζ) is of second degree due to
(25). Replacing f + and f̄ + in the third equation by the combination f + = e2U+ +ib+
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2120 G. Neugebauer, J. Hennig

and its complex conjugate from the first and the second equation, we get the condition

[(ζ − K1)(ζ − K2)(ζ − K3)(ζ − K4) + ip2]

× [(ζ − K1)(ζ − K2)(ζ − K3)(ζ − K4) − ip2] = π4(ζ)p4(ζ). (29)

Identifying the zeros of both sides, we see that each bracket of the left hand side has
to have two zeros of π4 as well as of p4 (note that the brackets must be complex
conjugate to each other). Therefore, f +(ζ) has to be the quotient of two polynomials
of second degree,

f +(ζ) = n2(ζ)

d2(ζ)
, (30)

where the numerator polynomial and the denominator polynomial have the structure

n2(ζ) = ζ2 + bζ + a,
(31)

d2(ζ) = ζ2 + eζ + d,

and a, b, d, e are complex constants.
Preparing the continuation of f +(ζ) off the axis of symmetry into the �-ζ plane

(see Fig. 1) we replace these constants by the appropriate parameters d̄2(Ki )/d2(Ki )

and n̄2(Ki )/n2(Ki ),

αi = K 2
i + ēKi + d̄

K 2
i + eKi + d

, βi = K 2
i + b̄Ki + ā

K 2
i + bKi + a

, αi ᾱi = 1, βi β̄i = 1. (32)

Equation (26) implies e2U+(Ki ) = 0 and therefore

f +(Ki ) = − f +(Ki ), i = 1, . . . , 4, (33)

whence

βi = −αi . (34)

In a next step we solve the linear algebraic system

ēKi + d̄ − eαi Ki − dαi = K 2
i (αi − 1), i = 1, . . . , 4, (35)

to obtain e, d and finally d2(ζ) in terms of αi , Ki (i = 1, . . . , 4). Because of (34)
n2(ζ) can simply be read off from d2(ζ) by replacing αi by −αi (i = 1, . . . , 4). Thus
we arrive at the determinant representation
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Non-existence of stationary two-black-hole configurations 2121

f +(ζ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 K 2
1 K 2

2 K 2
3 K 2

4

1 α1 K1(ζ − K1) α2 K2(ζ − K2) α3 K3(ζ − K3) α4 K4(ζ − K4)

0 K1 K2 K3 K4

0 α1(ζ − K1) α2(ζ − K2) α3(ζ − K3) α4(ζ − K4)

0 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

1 K 2
1 K 2

2 K 2
3 K 2

4

−1 α1 K1(ζ − K1) α2 K2(ζ − K2) α3 K3(ζ − K3) α4 K4(ζ − K4)

0 K1 K2 K3 K4

0 α1(ζ − K1) α2(ζ − K2) α3(ζ − K3) α4(ζ − K4)

0 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
(36)

for the Ernst potential f (ζ) on the axis A +.
We will now construct f (�, ζ). It can be shown that the axis values on A + deter-

mine the Ernst potential f (�, ζ) everywhere in the �-ζ plane. Hence, if we find a
continuation f (�, ζ) of f +(ζ) for all � ≥ 0 and can prove that it satisfies the Ernst
equation (12) we have achieved our goal. Introducing the “distances” ri from the points
� = 0, ζ = Ki by

ri :=
√

(ζ − Ki )2 + �2 ≥ 0, i = 1, . . . , 4, (37)

with the property

A + : ri = ζ − Ki , i = 1, . . . , 4, (38)

and replacing the expressions ζ − Ki (i = 1, . . . , 4) in (36) by ri we arrive at

f (�, ζ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 K 2
1 K 2

2 K 2
3 K 2

4

1 α1 K1r1 α2 K2r2 α3 K3r3 α4 K4r4

0 K1 K2 K3 K4

0 α1r1 α2r2 α3r3 α4r4

0 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣∣

1 K 2
1 K 2

2 K 2
3 K 2

4

−1 α1 K1r1 α2 K2r2 α3 K3r3 α4 K4r4

0 K1 K2 K3 K4

0 α1r1 α2r2 α3r3 α4r4

0 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (39)
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A straightforward calculation shows that f , as defined in (39), is indeed a solution of
the Ernst equation (12).1 As we have already mentioned, the remaining gravitational
potentials k, a (e2U = � f !) can be calculated from f via line integrals. This solu-
tion of the vacuum Einstein equations represented by the Ernst potential f (�, ζ) with
the axis values (30), (36) is known as the double-Kerr-NUT solution. It depends on
seven real parameters: four real arguments of αi , αi ᾱi = 1 (i = 1, . . . , 4) plus three
differences K1 − K2, K3 − K4 (“length” of horizons), K2 − K3 (“distance” between
the horizons). (Note that the configuration as sketched in Fig. 1 can be translated
along the ζ-axis.) Hence, the solution of the two-horizon problem is a (particular)
double-Kerr-NUT solution.

2.5 The equilibrium conditions

The double-Kerr-NUT solution in the form (39) was presented and discussed in [15]
as a particular (N = 2) case of the N -soliton solution [21,22]2 of the Ernst equation
generated by the application of N Bäcklund transformations to an arbitrary seed solu-
tion. Applying the boundary conditions (2), (3) to the representation (39), Tominatsu
and Kihara [26] derived a complete set of algebraic equilibrium conditions on the axis
of symmetry between the parameters αi , Ki (i = 1, . . . , 4). Particular solutions of the
algebraic system involving numerical results were discussed by Hoenselaers [13], who
came to conjecture that the double-Kerr-NUT solution cannot describe equilibrium
between two aligned rotating black holes with positive Komar masses. Hoenselaers
and Dietz [8,12] and Krenzer [17] were able to prove this conjecture for symmetric
configurations (K1 − K2 = K3 − K4, Ω1 = Ω2).

The final explicit solution of the Tomimatsu–Kihara equilibrium conditions was
found by Manko et al. [18]. Following their idea, we start with the condition k = 0
on A ±, A 0,

A ±,A 0 : k = 0 (40)

and apply it to k calculated from f , see, e.g. [16]. The only condition is

α1α2 + α3α4 = 0. (41)

Combining this result with the two conditions derived from a = 0 on A ±, A 0 (a
again calculated from f , see, e.g. [16]) one obtains

(1 − α4)
2

α4
γ = (1 − α3)

2

α3
, γ := K14 K24

K13 K23
,

(42)
(1 + α2)

2

α2
γ′ = (1 + α1)

2

α1
, γ′ := K23 K24

K13 K14
,

1 The procedure may seem rather tricky. In fact it reflects steps of the inverse scattering method whose
explanation is outside the scope of this paper.
2 A misprint in Ref. [21] was corrected at the end of Ref. [22].
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where

Ki j := Ki − K j , i, j = 1, . . . , 4. (43)

Introducing the relative horizon “lengths”

l1 = K12

K23
, l2 = K34

K23
(44)

we may express γ, γ′ by the scaled quantities l1, l2 alone,

γ = (1 + l2)(1 + l1 + l2)

1 + l1
, γ′ = 1 + l2

(1 + l1)(1 + l1 + l2)
. (45)

Setting

α3α4 = −α1α2 ≡ α2 (αᾱ = 1) (46)

to satisfy (41) one obtains the αi (i = 1, . . . , 4) from (42) in terms of the three real
parameters γ, γ′ (or, alternatively, l1, l2) and arg α = φ (α = eiφ) [18]

α1 = w′α2 + iεα

w′ − iεα
, α2 = α2 + iw′εα

1 − iw′εα
,

(47)

α3 = wα2 − α

w − α
, α4 = α2 − wα

1 − wα
,

where

w′ := |√γ′| ∈ (0, 1], w := |√γ| ∈ [1,∞), ε = ±1. (48)

Here l1, l2 are arbitrary positive constants and α is a periodic function of φ, α = eiφ.
With the aid of the relations (47) Manko and Ruiz [19] were able to calculate the

Komar masses M1, M2 belonging to the horizons H1, H2, respectively, and show that
positive Komar masses are incompatible with the equilibrium conditions.

A concise reformulation of the double-Kerr-NUT solution (39) was derived by
Yamazaki [28],

f (�, ζ) =

∣∣∣∣
R12 − 1 R14 − 1
R23 − 1 R34 − 1

∣∣∣∣
∣∣∣∣

R12 + 1 R14 + 1
R23 + 1 R34 + 1

∣∣∣∣
, Ri j := αi ri − α j r j

Ki j
, (49)

whereby the αi , (i = 1, . . . , 4) have to be taken from (47). Obviously, one can intro-
duce dimensionless coordinates �̃, ζ̃ via

�̃ = �

K23
, ζ̃ = ζ − K1

K23
(50)
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2124 G. Neugebauer, J. Hennig

and see directly that the Ernst potential, as a function of �̃ and ζ̃, depends only on the
three parameters l1, l2, φ. We will make use of the formulation (49) in the subsequent
sections.

3 Thermodynamics of the two-horizon solution

3.1 Thermodynamic quantities

The best way to get a systematic survey of the relevant physical parameters (state
variables) of a two-black-hole system and relations among them is to resort to the
framework of black hole thermodynamics. This theory tells us that the total mass
M of the system is a thermodynamic potential expressed in terms of the independent
extensive quantities: horizon areas A1, A2 and angular momenta J1, J2 of the two black
holes. As a consequence of the Gibbs formula (see Eq. (60) below), the intensive state
variables angular velocities Ω1, Ω2 and surface gravities κ1, κ2 are functions of the
independent quantities too. Furthermore, the individual Komar masses M1, M2 could
play a role. It turns out that all quantities can be calculated from the Ernst potential
and its derivatives in the points of intersection of horizon and symmetry axis (� = 0,
ζ = Ki , i = 1, . . . , 4).

By integrating parts of the Einstein equations over the two horizons H1, H2 we
obtain the following relations,

κ1 A1 = 2π(K1 − K2), κ2 A2 = 2π(K3 − K4), (51)

Ω1 M1 = i

4
( f1 − f2), Ω2 M2 = i

4
( f3 − f4), (52)

Ω1 J1 = M1

2
− 1

4
(K1 − K2), Ω2 J2 = M2

2
− 1

4
(K3 − K4), (53)

where fi = f (� = 0, ζ = Ki ). Starting with the properties of the Killing vector
L = ξ + Ωη on the horizon H (see Sect. 2.1) one can show that

κ1 + iΩ1 = 1

2
f +
,ζ |ζ=K1, κ2 + iΩ2 = 1

2
f 0
,ζ |ζ=K3, (54)

where f + and f 0 are the axis potentials on A + and A 0, respectively. A direct con-
sequence of (51) and (53) are the Smarr formulae [25]

Mi = 2Ωi Ji + κi

4π
Ai , i = 1, 2. (55)

In order to calculate the ADM mass M , one can make use of the asymptotic behav-
iour

f = 1 − 2M

r
for r → ∞, (56)
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where r2 = �2 + ζ2. Evaluation on A + leads to

M = 1

2
lim

ζ→∞
(1 − f +)ζ. (57)

Interestingly, the explicit calculation shows that

M = M1 + M2 (58)

holds for the 3-parameter solution, i.e. possibly present space–time singularities (see
Sect. 5.2) do not contribute to the ADM mass M . As a consequence, we obtain the
Smarr formula

M =
2∑

i=1

(
2Ωi Ji + κi

4π
Ai

)
(59)

for the total mass M .

3.2 Gibbs formula

A regular axisymmetric and stationary vacuum spacetime with black holes obeys the
Gibbs formula (“first law of black hole thermodynamics”)

δM =
∑

i

(
ΩiδJi + κi

8π
δAi

)
, (60)

see [4]. Hence, the total ADM mass M of the spacetime, as a function of the extensive
quantities Ji and Ai ,

M = M(Ji , Ai ), (61)

is a thermodynamic potential and infinitesimal mass changes δM between neighbour-
ing solutions are given by (60).

There could be spacetime singularities outside the event horizon (see Sect. 5.2).
Hence it is not clear a priori whether the Gibbs formula (60) also holds for the special
double-Kerr-NUT solution (49), (47). Therefore one has to test the validity of (60)
from the outset. For that purpose, we use the formulae from the previous subsection
and the Ernst potential (49), (47) to obtain expressions for M , J1, J2, Ω1, Ω2, κ1,
κ2, A1 and A2. Obviously, all these quantities can be written in terms of the four
parameters

(P1, . . . , P4) = (K23 ≡ K2 − K3, w,w′,α). (62)

As an example, the total mass has the explicit form

M = − K2 − K3

2

(
1 + w

w′
) M̃

M̃ + ε sin φ cos φ
(63)
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with

M̃ := 1 + ε

2

(
w′ + 1

w′

)
sin φ − 1

2

(
w + 1

w

)
cos φ. (64)

Equation (60) is equivalent to the four equations

∂ M

∂ Pi
= Ω1

∂ J1

∂ Pi
+ Ω2

∂ J2

∂ Pi
+ κ1

8π

∂ A1

∂ Pi
+ κ2

8π

∂ A2

∂ Pi
, i = 1, . . . , 4. (65)

A straightforward calculation shows that (65) is indeed satisfied. Therefore, we may
conclude that possible singularities do not contribute to δM and the first law of ther-
modynamics (60) holds.

4 The sub-extremality of black holes

Following Booth and Fairhurst [6], we will assume that a physically reasonable non-
degenerate3 black hole should be sub-extremal, i.e. characterized through the existence
of trapped surfaces (surfaces with a negative expansion of outgoing null geodesics) in
every sufficiently small interior neighbourhood of the event horizon. It can be shown
[9] that any such axisymmetric and stationary sub-extremal black hole satisfies the
inequality4

8π|J | < A, (66)

i.e. for given event horizon area A, there exists an upper bound for the absolute value
of the angular momentum |J |.

In order to test explicitly whether the two gravitational sources with the horizons
H1, H2 (tentative black holes) in the double-Kerr-NUT solution (49), (47) satisfy this
inequality, we calculate the quantities

pi := 8πJi

Ai
, i = 1, 2. (67)

We obtain the remarkably simple expressions

p1 = ε
1 + Φw′

w′(Φ + w′)
, p2 = ε

w(w − Φ)

1 − wΦ
, (68)

where

Φ := cos φ + ε sin φ ∈ [−√
2,

√
2]. (69)

3 The degenerate (extremal) case requires special attention.
4 Note that the inequality (66) can be generalized to the Einstein–Maxwell case, i.e. to electrically charged
black holes, see [10].
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Hence, the inequality (66) for each of the two black holes is equivalent to

p2
1 − 1 ≡ (1 − w′2)w

′2 + 2Φw′ + 1

w′2(Φ + w′)2 < 0 (70)

and

p2
2 − 1 ≡ (w2 − 1)

w2 − 2Φw + 1

(wΦ − 1)2 < 0, (71)

respectively.
Taking into account the allowed parameter ranges w ∈ [1,∞), w′ ∈ (0, 1], these

inequalities can only hold if

w′2 + 2Φw′ + 1 < 0 and w2 − 2Φw + 1 < 0. (72)

However, this implies Φw′ < 0 and Φw > 0 in contradiction to w′ > 0 and w > 0.
Thus we have proved the non-existence of a stationary and axisymmetric two-black-

hole configuration with separate horizons (see Fig. 1), i.e. the spin-spin repulsion of
two aligned black holes cannot compensate for their gravitational attraction. The non-
existence theorem is essentially based on the inequality (66) that is as shown in [9] a
consequence of a defining geometrical black hole property [6] (the case of extremal
black holes requires special attention).

5 Further properties of the double-Kerr-NUT solution

As we have seen in the previous section, the equilibrium of two aligned black holes
is impossible. The only candidate for a solution of the balance problem—the double-
Kerr-NUT solution—has to be dismissed as a physically irrelevant solution as dis-
cussed above. Nevertheless, it is interesting to study further properties of the solution
(49), (47). In the following two subsections we comment shortly on the interior of the
two gravitational sources and give numerical evidence for the existence of singularities
outside the horizons H1 and H2.

5.1 The interior of black holes

It was shown in [2] that every axisymmetric and stationary black hole, which is regular
in an exterior neighbourhood of the event horizon, also possesses a regular interior
region inside the event horizon. In particular, there always exists a regular inner Cauchy
horizon and the inner solution does not develop singularities before this horizon is
reached. Moreover, the spacetime is even regular at the Cauchy horizon, provided that
the angular momentum J of the black hole does not vanish. Remarkably, the areas A
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and ACH of event and inner Cauchy horizon satisfy the equation5

(8πJ )2 = ACH A. (73)

It is interesting to test this relation explicitly for both of the two gravitational sources
in the double-Kerr-NUT solution (49), (47). For that purpose, we calculate the areas
A1, A2 of the horizons H1, H2 using (51) and (54). As shown in [2], the areas of
Cauchy horizons can be calculated from analytical continuations of f + and f 0 into
regions with ζ < K1 and ζ < K3, respectively. In this way we obtain

ACH
1 = −4π

K1 − K2

� f +
,ζ |ζ=K2

, ACH
2 = −4π

K3 − K4

� f 0
,ζ |ζ=K4

. (74)

Using these formulae, the explicit calculation shows that the equations

(8πJi )
2 = ACH

i Ai , i = 1, 2, (75)

are indeed satisfied, i.e. (73) holds for both gravitational sources.

5.2 Singularities outside the black holes

As we have proved in Sect. 4, at least one of the two “black holes” in the double-
Kerr-NUT solution (49), (47) is not sub-extremal for which reason the solution is
not physically reasonable. It may then well be that singularities outside the horizons
appear.

To tackle this problem we ask whether the determinant in the denominator of the
representation (49) of the Ernst potential f has zeros off the axis. A numerical study
for a large number of parameter values shows that this is indeed the case, see Figs. 2
and 3. As a consequence, the Ernst potential becomes singular at these zeros (it can
be shown that the numerator does not vanish at the same coordinate positions), i.e.
there exist singular rings outside the horizons. Our numerical investigations seem to
indicate that every double-Kerr-NUT solution with the special parameter relations
(47) suffers from the presence of singular rings.

6 Summary

The stationary equilibrium of two aligned rotating black holes can be described by a
boundary value problem for two separate (Killing-) horizons (see Fig. 1). Applying
the inverse (scattering) method, one can show that the solution of the problem is a
(particular case of the) double-Kerr-NUT solution (a solution originally generated by
a two-fold Bäcklund transformation of Minkowski space). The regularity conditions to
be satisfied by the metric on the axis of symmetry outside the two horizons restrict the

5 Note that these statements can be generalized to black hole spacetimes with electromagnetic fields, see
[3,11].
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Fig. 2 Singularities of the Ernst potential: The plots show, for two different configurations, curves along
which the real part (solid curve) and imaginary part (dashed curve) of the determinant in the denominator
of the Ernst potential f vanish. At the intersection points S1, S2, (S3), the Ernst potential diverges. The
horizons H1, H2 are marked as black lines on the ζ-axis. Parameters: φ = 3

4 π, w = 10/3, w′ = 0.3 (left
panel) and φ = −0.1, w = 1.3, w′ = 0.5 (right panel)

Fig. 3 Singular Ernst-Potential: Real and imaginary part of the Ernst potential f for the example config-
uration in Fig. 2, right panel

number of free parameters entering the solution. The resulting 3-parameter solution
(written in dimensionless coordinates) does not satisfy the characteristic condition
8π|J | < A for each of the two black holes (J : angular momentum, A: area of the
horizon). Since this inequality is a consequence of the geometry of trapped surfaces in
the interior vicinity of the event horizon of every sub-extremal black hole, there exists
no stationary equilibrium configuration for two aligned sub-extremal black holes.
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