2,233 research outputs found

    Universal properties of distorted Kerr-Newman black holes

    Full text link
    We discuss universal properties of axisymmetric and stationary configurations consisting of a central black hole and surrounding matter in Einstein-Maxwell theory. In particular, we find that certain physical equations and inequalities (involving angular momentum, electric charge and horizon area) are not restricted to the Kerr-Newman solution but can be generalized to the situation where the black hole is distorted by an arbitrary axisymmetric and stationary surrounding matter distribution.Comment: 7 page

    Surmounting collectively oscillating bottlenecks

    Full text link
    We study the collective escape dynamics of a chain of coupled, weakly damped nonlinear oscillators from a metastable state over a barrier when driven by a thermal heat bath in combination with a weak, globally acting periodic perturbation. Optimal parameter choices are identified that lead to a drastic enhancement of escape rates as compared to a pure noise-assisted situation. We elucidate the speed-up of escape in the driven Langevin dynamics by showing that the time-periodic external field in combination with the thermal fluctuations triggers an instability mechanism of the stationary homogeneous lattice state of the system. Perturbations of the latter provided by incoherent thermal fluctuations grow because of a parametric resonance, leading to the formation of spatially localized modes (LMs). Remarkably, the LMs persist in spite of continuously impacting thermal noise. The average escape time assumes a distinct minimum by either tuning the coupling strength and/or the driving frequency. This weak ac-driven assisted escape in turn implies a giant speed of the activation rate of such thermally driven coupled nonlinear oscillator chains

    Periodic and compacton travelling wave solutions of discrete nonlinear Klein-Gordon lattices

    Full text link
    We prove the existence of periodic travelling wave solutions for general discrete nonlinear Klein-Gordon systems, considering both cases of hard and soft on-site potentials. In the case of hard on-site potentials we implement a fixed point theory approach, combining Schauder's fixed point theorem and the contraction mapping principle. This approach enables us to identify a ring in the energy space for non-trivial solutions to exist, energy (norm) thresholds for their existence and upper bounds on their velocity. In the case of soft on-site potentials, the proof of existence of periodic travelling wave solutions is facilitated by a variational approach based on the Mountain Pass Theorem. The proof of the existence of travelling wave solutions satisfying Dirichlet boundary conditions establishes rigorously the presence of compactons in discrete nonlinear Klein-Gordon chains. Thresholds on the averaged kinetic energy for these solutions to exist are also derived.Comment: 21 pages, 1 figur

    Bulk and surface magnetoinductive breathers in binary metamaterials

    Full text link
    We study theoretically the existence of bulk and surface discrete breathers in a one-dimensional magnetic metamaterial comprised of a periodic binary array of split-ring resonators. The two types of resonators differ in the size of their slits and this leads to different resonant frequencies. In the framework of the rotating-wave approximation (RWA) we construct several types of breather excitations for both the energy-conserved and the dissipative-driven systems by continuation of trivial breather solutions from the anticontinuous limit to finite couplings. Numerically-exact computations that integrate the full model equations confirm the quality of the RWA results. Moreover, it is demonstrated that discrete breathers can spontaneously appear in the dissipative-driven system as a results of a fundamental instability.Comment: 10 pages, 16 figure

    Dissipative localised structures for the complex Discrete Ginzburg-Landau equation

    Full text link
    The discrete complex Ginzburg-Landau equation is a fundamental model for the dynamics of nonlinear lattices incorporating competitive dissipation and energy gain effects. Such mechanisms are of particular importance for the study of survival/destruction of localised structures in many physical situations. In this work, we prove that in the discrete complex Ginzburg-Landau equation dissipative solitonic waveforms persist for significant times by introducing a dynamical transitivity argument. This argument is based on a combination of the notions of ``inviscid limits'' and of the ``continuous dependence of solutions on their initial data'', between the dissipative system and its Hamiltonian counterparts. Thereby, it establishes closeness of the solutions of the Ginzburg-Landau lattice to those of the conservative ideals described by the Discrete Nonlinear Schr\"odinger and Ablowitz-Ladik lattices. Such a closeness holds when the initial conditions of the systems are chosen to be sufficiently small in the suitable metrics and for small values of the dissipation or gain strengths. Our numerical findings are in excellent agreement with the analytical predictions for the dynamics of the dissipative bright, dark or even Peregrine-type solitonic waveforms.Comment: 20 pages, 10 figures. To appear in Journal of Nonlinear Scienc

    On smoothness of Black Saturns

    Get PDF
    We prove smoothness of the domain of outer communications (d.o.c.) of the Black Saturn solutions of Elvang and Figueras. We show that the metric on the d.o.c. extends smoothly across two disjoint event horizons with topology R x S^3 and R x S^1 x S^2. We establish stable causality of the d.o.c. when the Komar angular momentum of the spherical component of the horizon vanishes, and present numerical evidence for stable causality in general.Comment: 47 pages, 5 figure

    Non-existence of stationary two-black-hole configurations

    Get PDF
    We resume former discussions of the question, whether the spin-spin repulsion and the gravitational attraction of two aligned black holes can balance each other. To answer the question we formulate a boundary value problem for two separate (Killing-) horizons and apply the inverse (scattering) method to solve it. Making use of results of Manko, Ruiz and Sanabria-G\'omez and a novel black hole criterion, we prove the non-existence of the equilibrium situation in question.Comment: 15 pages, 3 figures; Contribution to Juergen Ehlers Memorial Issue (GeRG journal
    corecore