118 research outputs found

    Prognostic factors in metaplastic carcinoma of the breast: A multi-institutional study

    Get PDF
    Background: Metaplastic breast carcinoma (MBC) is a rare type of breast cancer that has basal-like characteristics and is perceived to have poorer prognosis when compared with conventional no specific type/ductal carcinomas (ductal/NST). However, current data on MBC are largely derived from small case series or population-based reports. This study aimed to assess the clinicopathological features and outcome of MBC identified through an international multicentre collaboration. Methods: A large international multicentre series of MBC (no=405) with histological confirmation and follow-up information has been included in this study. The prognostic value of different variables and outcome has been assessed and compared with grade, nodal status and ER/HER2 receptor-matched ductal/NST breast carcinoma. Results: The outcome of MBC diagnosed in Asian countries was more favourable than those in Western countries. The outcome of MBC is not different from matched ductal/NST carcinoma but the performance of the established prognostic variables in MBC is different. Lymph node stage, lymphovascular invasion and histologic subtype are associated with outcome but tumour size and grade are not. Chemotherapy was associated with longer survival, although this effect was limited to early-stage disease. In this study no association between radiotherapy and outcome was identified. Multivariate analysis of MBC shows that histologic subtype is an independent prognostic feature. Conclusions: This study suggests that MBC is a heterogeneous disease. Although the outcome of MBC is not different to matched conventional ductal/NST breast carcinoma, its behaviour is dependent on the particular subtype with spindle cell carcinoma in particular has an aggressive biological behaviour. Management of patients with MBC should be based on validated prognostic variables

    Membrane Docking Geometry of GRP1 PH Domain Bound to a Target Lipid Bilayer: An EPR Site-Directed Spin-Labeling and Relaxation Study

    Get PDF
    The second messenger lipid PIP3 (phosphatidylinositol-3,4,5-trisphosphate) is generated by the lipid kinase PI3K (phosphoinositide-3-kinase) in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP3-specific pleckstrin homology (PH) domains to the membrane surface. Despite the broad importance of PIP3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i) PIP3 target lipid that provides specificity and affinity, and (ii) PS facilitator lipid that enhances the PIP3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral diffusion observed for PIP3-bound GRP1 PH domain on supported lipid bilayers

    EMT Inducers Catalyze Malignant Transformation of Mammary Epithelial Cells and Drive Tumorigenesis towards Claudin-Low Tumors in Transgenic Mice

    Get PDF
    The epithelial-mesenchymal transition (EMT) is an embryonic transdifferentiation process consisting of conversion of polarized epithelial cells to motile mesenchymal ones. EMT–inducing transcription factors are aberrantly expressed in multiple tumor types and are known to favor the metastatic dissemination process. Supporting oncogenic activity within primary lesions, the TWIST and ZEB proteins can prevent cells from undergoing oncogene-induced senescence and apoptosis by abolishing both p53- and RB-dependent pathways. Here we show that they also downregulate PP2A phosphatase activity and efficiently cooperate with an oncogenic version of H-RAS in malignant transformation of human mammary epithelial cells. Thus, by down-regulating crucial tumor suppressor functions, EMT inducers make cells particularly prone to malignant conversion. Importantly, by analyzing transformed cells generated in vitro and by characterizing novel transgenic mouse models, we further demonstrate that cooperation between an EMT inducer and an active form of RAS is sufficient to trigger transformation of mammary epithelial cells into malignant cells exhibiting all the characteristic features of claudin-low tumors, including low expression of tight and adherens junction genes, EMT traits, and stem cell–like characteristics. Claudin-low tumors are believed to be the most primitive breast malignancies, having arisen through transformation of an early epithelial precursor with inherent stemness properties and metaplastic features. Challenging this prevailing view, we propose that these aggressive tumors arise from cells committed to luminal differentiation, through a process driven by EMT inducers and combining malignant transformation and transdifferentiation

    Quantum Rings in Electromagnetic Fields

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer via the DOI in this recordThis chapter is devoted to optical properties of so-called Aharonov-Bohm quantum rings (quantum rings pierced by a magnetic flux resulting in AharonovBohm oscillations of their electronic spectra) in external electromagnetic fields. It studies two problems. The first problem deals with a single-electron AharonovBohm quantum ring pierced by a magnetic flux and subjected to an in-plane (lateral) electric field. We predict magneto-oscillations of the ring electric dipole moment. These oscillations are accompanied by periodic changes in the selection rules for inter-level optical transitions in the ring allowing control of polarization properties of the associated terahertz radiation. The second problem treats a single-mode microcavity with an embedded Aharonov-Bohm quantum ring which is pierced by a magnetic flux and subjected to a lateral electric field. We show that external electric and magnetic fields provide additional means of control of the emission spectrum of the system. In particular, when the magnetic flux through the quantum ring is equal to a half-integer number of the magnetic flux quanta, a small change in the lateral electric field allows for tuning of the energy levels of the quantum ring into resonance with the microcavity mode, thus providing an efficient way to control the quantum ring-microcavity coupling strength. Emission spectra of the system are discussed for several combinations of the applied magnetic and electric fields

    Measuring total factor productivity on Irish dairy farms: a Fisher index approach using farm-level data

    Get PDF
    peer reviewedThis paper presents a Fisher index measure of the total factor productivity (TFP) performance of Irish dairy farms over the period 2006–2016 using the Teagasc National Farm Survey (NFS) data. The removal of milk quotas in 2015 has led to an increase of over 30% in dairy cow numbers since 2010, and although suckler cow numbers have dropped slightly, the total number of cows in Ireland reached an all-time high of 2.5 million head in 2016. This large increase adds to the environmental pressures attributed to agricultural output and puts the focus firmly on how efficiently the additional agricultural output associated with higher cow numbers is produced. The primary purpose of this paper is to identify a standardised measure of the TFP performance of Irish dairy farms that can be routinely updated using Teagasc NFS data. We found that relative to 2010 the TFP of Irish dairy farms has increased by almost 18%; however, in one production year 2015, when milk quota was removed, the TFP measure increased by 7% and TFP continued to grow by 2.5% in the production year 2016. It would seem therefore that the removal of the European dairy quota system has resulted in a windfall gain for Irish dairy farmers but that productivity gains are continuing. Future data will be required to investigate the longer-term TFP performance of Irish dairy farms in the post-milk quota era

    Determination of the number of J/ψ events with J/ψ → inclusive decays

    Get PDF
    postprin
    • …
    corecore