505 research outputs found

    Effects of relative humidity on aerosol light scattering in the Arctic

    Get PDF
    Aerosol particles experience hygroscopic growth in the ambient atmosphere. Their optical properties – especially the aerosol light scattering – are therefore strongly dependent on the ambient relative humidity (RH). In-situ light scattering measurements of long-term observations are usually performed under dry conditions (RH>30–40%). The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. This study combines measurements and model calculations to describe the RH effect on aerosol light scattering for the first time for aerosol particles present in summer and fall in the high Arctic. For this purpose, a field campaign was carried out from July to October 2008 at the Zeppelin station in Ny-Ålesund, Svalbard. The aerosol light scattering coefficient σ<sub>sp</sub>(λ) was measured at three distinct wavelengths (λ=450, 550, and 700 nm) at dry and at various, predefined RH conditions between 20% and 95% with a recently developed humidified nephelometer (WetNeph) and with a second nephelometer measuring at dry conditions with an average RH<10% (DryNeph). In addition, the aerosol size distribution and the aerosol absorption coefficient were measured. The scattering enhancement factor <i>f</i>(RH, λ) is the key parameter to describe the RH effect on σ<sub>sp</sub>(λ) and is defined as the RH dependent σ<sub>sp</sub>(RH, λ) divided by the corresponding dry σ<sub>sp</sub>(RH<sub>dry</sub>, λ). During our campaign the average <i>f</i>(RH=85%, λ=550 nm) was 3.24±0.63 (mean ± standard deviation), and no clear wavelength dependence of <i>f</i>(RH, λ) was observed. This means that the ambient scattering coefficients at RH=85% were on average about three times higher than the dry measured in-situ scattering coefficients. The RH dependency of the recorded <i>f</i>(RH, λ) can be well described by an empirical one-parameter equation. We used a simplified method to retrieve an apparent hygroscopic growth factor <i>g</i>(RH), defined as the aerosol particle diameter at a certain RH divided by the dry diameter, using the WetNeph, the DryNeph, the aerosol size distribution measurements and Mie theory. With this approach we found, on average, <i>g</i>(RH=85%) values to be 1.61±0.12 (mean±standard deviation). No clear seasonal shift of <i>f</i>(RH, λ) was observed during the 3-month period, while aerosol properties (size and chemical composition) clearly changed with time. While the beginning of the campaign was mainly characterized by smaller and less hygroscopic particles, the end was dominated by larger and more hygroscopic particles. This suggests that compensating effects of hygroscopicity and size determined the temporal stability of <i>f</i>(RH, λ). During sea salt influenced periods, distinct deliquescence transitions were observed. At the end we present a method on how to transfer the dry in-situ measured aerosol scattering coefficients to ambient values for the aerosol measured during summer and fall at this location

    Emissions of ozone-depleting halocarbons from China

    Get PDF
    National emission inventories of ozone-depleting substances (ODS) play a key role in the control mechanisms of the Montreal Protocol's emission reduction plans. New quasi-continuous ground-based atmospheric measurements allow us to estimate China's current emissions of the most effective ODS. This serves as an independent validation of China's ODS consumption data reported to the United Nations Environment Programme (UNEP). Emissions of most first-generation ODS have declined in recent years, suggesting compliance with the regulations of China's advanced phase-out program. In contrast the emissions of some second-generation ODS have increased. Because China is currently one of the largest consumers of first generation ODS, the country's upcoming complete phase-out will be crucial for the rate of decline of atmospheric ODS hence the eventual recovery of the stratospheric ozone. Citation: Vollmer, M. K., et al. (2009), Emissions of ozone-depleting halocarbons from China, Geophys. Res. Lett., 36, L15823, doi:10.1029/2009GL038659

    Evaluation of simulated CO<sub>2</sub> power plant plumes from six high-resolution atmospheric transport models

    Get PDF
    Global anthropogenic CO2 sources are dominated by power plants and large industrial facilities. Quantifying the emissions of these point sources is therefore one of the main goals of the planned constellation of anthropogenic CO2 monitoring satellites (CO2M) of the European Copernicus program. Atmospheric transport models may be used to study the capabilities of such satellites through observing system simulation experiments and to quantify emissions in an inverse modelling framework. How realistically the CO2 plumes of power plants can be simulated and how strongly the results may depend on model type and resolution, however, is not well known due to a lack of observations available for benchmarking. Here, we use the unique data set of aircraft in-situ and remote sensing observations collected during the CoMet measurement campaign down-wind of the coal fired power plants at Bełchatów in Poland and Jaenschwalde in Germany in 2018 to evaluate the simulations of six different atmospheric transport models

    Surface Deposition and Imaging of Large Ag Clusters Formed in He Droplets

    Full text link
    The utility of a continuous beam of He droplets for the assembly and surface deposition of Ag clusters, ~ 300 - 6 000, is studied with transmission electron microscopy. Images of the clusters on amorphous carbon substrates obtained at short deposition times have provided for a measure of the size distribution of the metal clusters. The average sizes of the deposited clusters are in good agreement with an energy balance based estimate of Ag cluster growth in He droplets. Measurements of the deposition rate indicate that upon impact with the surface the He-embedded cluster is attached with high probability. The stability of the deposited clusters on the substrate is discussed.Comment: 24 pages, 5 figure

    A renewed rise in global HCFC-141b emissions between 2017???2021

    Get PDF
    Global emissions of the ozone-depleting gas HCFC-141b (1,1-dichloro-1-fluoroethane, CH3CCl2F) derived from measurements of atmospheric mole fractions increased between 2017 and 2021 despite a fall in reported production and consumption of HCFC-141b for dispersive uses. HCFC-141b is a controlled substance under the Montreal Protocol, and its phase-out is currently underway, after a peak in reported consumption and production in developing (Article 5) countries in 2013. If reported production and consumption are correct, our study suggests that the 2017–2021 rise is due to an increase in emissions from the bank when appliances containing HCFC-141b reach the end of their life, or from production of HCFC-141b not reported for dispersive uses. Regional emissions have been estimated between 2017–2020 for all regions where measurements have sufficient sensitivity to emissions. This includes the regions of northwestern Europe, east Asia, the United States and Australia, where emissions decreased by a total of 2.3 ± 4.6 Gg yr−1, compared to a mean global increase of 3.0 ± 1.2 Gg yr−1 over the same period. Collectively these regions only account for around 30 % of global emissions in 2020. We are not able to pinpoint the source regions or specific activities responsible for the recent global emission rise

    Monoubiquitination of syntaxin 3 leads to retrieval from the basolateral plasma membrane and facilitates cargo recruitment to exosomes

    Get PDF
    Syntaxin 3 (Stx3), a SNARE protein located and functioning at the apical plasma membrane of epithelial cells, is required for epithelial polarity. A fraction of Stx3 is localized to late endosomes/lysosomes, although how it traffics there and its function in these organelles is unknown. Here we report that Stx3 undergoes monoubiquitination in a conserved polybasic domain. Stx3 present at the basolateral—but not the apical—plasma membrane is rapidly endocytosed, targeted to endosomes, internalized into intraluminal vesicles (ILVs), and excreted in exosomes. A nonubiquitinatable mutant of Stx3 (Stx3-5R) fails to enter this pathway and leads to the inability of the apical exosomal cargo protein GPRC5B to enter the ILV/exosomal pathway. This suggests that ubiquitination of Stx3 leads to removal from the basolateral membrane to achieve apical polarity, that Stx3 plays a role in the recruitment of cargo to exosomes, and that the Stx3-5R mutant acts as a dominant-negative inhibitor. Human cytomegalovirus (HCMV) acquires its membrane in an intracellular compartment and we show that Stx3-5R strongly reduces the number of excreted infectious viral particles. Altogether these results suggest that Stx3 functions in the transport of specific proteins to apical exosomes and that HCMV exploits this pathway for virion excretion

    Chronic allograft nephropathy

    Get PDF
    Chronic allograft nephropathy (CAN) is the leading cause of renal allograft loss in paediatric renal transplant recipients. CAN is the result of immunological and nonimmunological injury, including acute rejection episodes, hypoperfusion, ischaemia reperfusion, calcineurin toxicity, infection and recurrent disease. The development of CAN is often insidious and may be preceded by subclinical rejection in a well-functioning allograft. Classification of CAN is histological using the Banff classification of renal allograft pathology with classic findings of interstitial fibrosis, tubular atrophy, glomerulosclerosis, fibrointimal hyperplasia and arteriolar hyalinosis. Although improvement in immunosuppression has led to greater 1-year graft survival rates, chronic graft loss remains relatively unchanged and opportunistic infectious complications remain a problem. Protocol biopsy monitoring is not current practice in paediatric transplantation for CAN monitoring but may have a place if new treatment options become available. Newer immunosuppression regimens, closer monitoring of the renal allograft and management of subclinical rejection may lead to reduced immune injury leading to CAN in the paediatric population but must be weighed against the risk of increased immunosuppression and calcineurin inhibitor nephrotoxicity

    A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance

    Get PDF
    Damaged mitochondria pose a lethal threat to cells that necessitates their prompt removal. The currently recognized mechanism for disposal of mitochondria is autophagy, where damaged organelles are marked for disposal via ubiquitylation by Parkin. Here we report a novel pathway for mitochondrial elimination, in which these organelles undergo Parkin-dependent sequestration into Rab5-positive early endosomes via the ESCRT machinery. Following maturation, these endosomes deliver mitochondria to lysosomes for degradation. Although this endosomal pathway is activated by stressors that also activate mitochondrial autophagy, endosomal-mediated mitochondrial clearance is initiated before autophagy. The autophagy protein Beclin1 regulates activation of Rab5 and endosomal-mediated degradation of mitochondria, suggesting cross-talk between these two pathways. Abrogation of Rab5 function and the endosomal pathway results in the accumulation of stressed mitochondria and increases susceptibility to cell death in embryonic fibroblasts and cardiac myocytes. These data reveal a new mechanism for mitochondrial quality control mediated by Rab5 and early endosomes
    corecore