993 research outputs found

    Configuration design studies and wind tunnel tests of an energy efficient transport with a high-aspect-ratio supercritical wing

    Get PDF
    The results of design studies and wind tunnel tests of high aspect ratio supercritical wings suitable for a medium range, narrow body transport aircraft flying near M=0.80 were presented. The basic characteristics of the wing design were derived from system studies of advanced transport aircraft where detailed structural and aerodynamic tradeoffs were used to determine the most optimum design from the standpoint of fuel usage and direct operating cost. These basic characteristics included wing area, aspect ratio, average thickness, and sweep. The detailed wing design was accomplished through application of previous test results and advanced computational transonic flow procedures. In addition to the basic wing/body development, considerable attention was directed to nacelle/plyon location effects, horizontal tail effects, and boundary layer transition effects. Results of these tests showed that the basic cruise performance objectives were met or exceeded

    Population spread of the introduced red imported fire ant parasitoid, Pseudacteon tricuspis Borgmeier (Diptera: Phoridae), in Louisiana

    Get PDF
    Predicting the spread of introduced species, such as natural enemies used in classical biological control programs, requires quantitative data on the rates of spread. Here, the pattern of spread of Pseudacteon tricuspis Borgmeier (Diptera: Phoridae), a parasitoid of the red imported fire ant (Solenopsis invicta Buren; Hymenoptera: Formicidae), was monitored at two widely separated release sites in Louisiana, USA. At both sites, P. tricuspis range expansion (measured as the mean radius of the range from four cardinal directions) was accelerating during the first four years post-release. This pattern contrasts with a linear pattern expected with simple diffusion. This suggests that population spread involved both a neighborhood diffusion and long-distance dispersal component. This is known as stratified or jump dispersal. Annual rates of spread were low in the first two years post-release (possibly owing to an Allee effect), increased rapidly in years 3-4, and slowed down or leveled off by years 5-6. Annual spread rates reached a peak of 15-25 km/yr, with the northward spread being about 40% greater than the spread in the other cardinal directions. High rates of spread in the latter years and directional bias in the spread of P. tricuspis may have been driven by prevailing winds and two northward-moving hurricanes. Spread of introduced species offers insight into factors affecting spread that is more difficult to evaluate for native species. © 2007 Elsevier Inc. All rights reserved

    Assessment of parameters describing representativeness of air quality in-situ measurement sites

    Get PDF
    The atmospheric layer closest to the ground is strongly influenced by variable surface fluxes (emissions, surface deposition) and can therefore be very heterogeneous. In order to perform air quality measurements that are representative of a larger domain or a certain degree of pollution, observatories are placed away from population centres or within areas of specific population density. Sites are often categorised based on subjective criteria that are not uniformly applied by the atmospheric community within different administrative domains yielding an inconsistent global air quality picture. A novel approach for the assessment of parameters reflecting site representativeness is presented here, taking emissions, deposition and transport towards 34 sites covering Western and Central Europe into account. These parameters are directly inter-comparable among the sites and can be used to select sites that are, on average, more or less suitable for data assimilation and comparison with satellite and model data. Advection towards these sites was simulated by backward Lagrangian Particle Dispersion Modelling (LPDM) to determine the sites' average catchment areas for the year 2005 and advection times of 12, 24 and 48 h. Only variations caused by emissions and transport during these periods were considered assuming that these dominate the short-term variability of most but especially short lived trace gases. The derived parameters describing representativeness were compared between sites and a novel, uniform and observation-independent categorisation of the sites based on a clustering approach was established. Six groups of European background sites were identified ranging from <i>generally remote</i> to more polluted <i>agglomeration</i> sites. These six categories explained 50 to 80% of the inter-site variability of median mixing ratios and their standard deviation for NO<sub>2</sub> and O<sub>3</sub>, while differences between group means of the longer-lived trace gas CO were insignificant. The derived annual catchment areas strongly depended on the applied LPDM and input wind fields, the catchment settings and the year of analysis. Nevertheless, the parameters describing representativeness showed considerably less variability than the catchment geometry, supporting the applicability of the derived station categorisation

    Alpine Glacier Reveals Ecosystem Impacts of Europe’s Prosperity and Peril Over the Last Millennium

    Get PDF
    Information about past ecosystem dynamics and human activities is stored in the ice of Colle Gnifetti glacier in the Swiss Alps. Adverse climatic intervals incurred crop failures and famines and triggered reestablishment of forest vegetation but also societal resilience through innovation. Historical documents and lake sediments record these changes at local—regional scales but often struggle to comprehensively document continental-scale impacts on ecosystems. Here, we provide unique multiproxy evidence of broad-scale ecosystem, land use, and climate dynamics over the past millennium from a Colle Gnifetti microfossil and oxygen isotope record. Microfossil data indicate that before 1750 CE forests and fallow land rapidly replaced crop cultivation during historically documented societal crises caused by climate shifts and epidemics. Subsequently, with technology and the introduction of more resilient crops, European societies adapted to the Little Ice Age cold period, but resource overexploitation and industrialization led to new regional to global-scale environmental challenges

    Continuous isotopic composition measurements of tropospheric CO<sub>2</sub> at Jungfraujoch (3580 m a.s.l.), Switzerland: real-time observation of regional pollution events

    Get PDF
    A quantum cascade laser based absorption spectrometer (QCLAS) is applied for the first time to perform in situ, continuous and high precision isotope ratio measurements of CO<sub>2</sub> in the free troposphere. Time series of the three main CO<sub>2</sub> isotopologue mixing ratios (<sup>12</sup>C<sup>16</sup>CO<sub>2</sub>, <sup>13</sup>C<sup>16</sup>CO<sub>2</sub> and <sup>12</sup>C<sup>18</sup>O<sup>16</sup>O) have simultaneously been measured at one second time resolution over two years (from August 2008 to present) at the High Altitude Research Station Jungfraujoch (3580 m a.s.l., Switzerland). This work focuses on periods in February 2009 only, when sudden and pronounced enhancements in the tropospheric CO<sub>2</sub> were observed. These short-term changes were closely correlated with variations in CO mixing ratios measured at the same site, indicating combustion related emissions as potential source. The analytical precision of 0.046&permil; (at 50 s integration time) for both &delta;<sup>13</sup>C and &delta;<sup>18</sup>O and the high temporal resolution allowed the application of the Keeling plot method for source signature identification. The spatial origin of these CO<sub>2</sub> emission sources was then determined by backward Lagrangian particle dispersion simulations

    The practice of soft power

    Get PDF
    Turkey exerts significant influence over Balkans Muslims. While some of this has to do with Turkey’s military and economic power, much relates to their shared religiosity and common history. Some may characterize this as “soft power”; however, this term struggles to completely explain these dynamics. Many Balkans Muslims have an ambivalent attitude towards Turkey, even as they accept its influence. Moreover, Turkish influence comes not from passive qualities it possesses but active steps it takes to maintain its image. We argue that this can be better explained through the practice turn in international relations; Turkey follows commonly accepted religious practices that Balkans Muslims recognize, granting Turkey influence even if they do not internalize its dominant position. We demonstrate this with the results of interviews conducted among Balkans Muslim political, religious and media figures. The article provides insight into the strategies non-state religious actors, states and the media implement in world politics, while also expanding our understanding of soft power in the world

    Effects of relative humidity on aerosol light scattering in the Arctic

    Get PDF
    Aerosol particles experience hygroscopic growth in the ambient atmosphere. Their optical properties – especially the aerosol light scattering – are therefore strongly dependent on the ambient relative humidity (RH). In-situ light scattering measurements of long-term observations are usually performed under dry conditions (RH&amp;gt;30–40%). The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. This study combines measurements and model calculations to describe the RH effect on aerosol light scattering for the first time for aerosol particles present in summer and fall in the high Arctic. For this purpose, a field campaign was carried out from July to October 2008 at the Zeppelin station in Ny-Ålesund, Svalbard. The aerosol light scattering coefficient &amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;(&amp;lambda;) was measured at three distinct wavelengths (λ=450, 550, and 700 nm) at dry and at various, predefined RH conditions between 20% and 95% with a recently developed humidified nephelometer (WetNeph) and with a second nephelometer measuring at dry conditions with an average RH&amp;lt;10% (DryNeph). In addition, the aerosol size distribution and the aerosol absorption coefficient were measured. The scattering enhancement factor &lt;i&gt;f&lt;/i&gt;(RH, &amp;lambda;) is the key parameter to describe the RH effect on &amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;(&amp;lambda;) and is defined as the RH dependent &amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;(RH, &amp;lambda;) divided by the corresponding dry &amp;sigma;&lt;sub&gt;sp&lt;/sub&gt;(RH&lt;sub&gt;dry&lt;/sub&gt;, &amp;lambda;). During our campaign the average &lt;i&gt;f&lt;/i&gt;(RH=85%, λ=550 nm) was 3.24&amp;plusmn;0.63 (mean &amp;plusmn; standard deviation), and no clear wavelength dependence of &lt;i&gt;f&lt;/i&gt;(RH, &amp;lambda;) was observed. This means that the ambient scattering coefficients at RH=85% were on average about three times higher than the dry measured in-situ scattering coefficients. The RH dependency of the recorded &lt;i&gt;f&lt;/i&gt;(RH, &amp;lambda;) can be well described by an empirical one-parameter equation. We used a simplified method to retrieve an apparent hygroscopic growth factor &lt;i&gt;g&lt;/i&gt;(RH), defined as the aerosol particle diameter at a certain RH divided by the dry diameter, using the WetNeph, the DryNeph, the aerosol size distribution measurements and Mie theory. With this approach we found, on average, &lt;i&gt;g&lt;/i&gt;(RH=85%) values to be 1.61&amp;plusmn;0.12 (mean&amp;plusmn;standard deviation). No clear seasonal shift of &lt;i&gt;f&lt;/i&gt;(RH, &amp;lambda;) was observed during the 3-month period, while aerosol properties (size and chemical composition) clearly changed with time. While the beginning of the campaign was mainly characterized by smaller and less hygroscopic particles, the end was dominated by larger and more hygroscopic particles. This suggests that compensating effects of hygroscopicity and size determined the temporal stability of &lt;i&gt;f&lt;/i&gt;(RH, &amp;lambda;). During sea salt influenced periods, distinct deliquescence transitions were observed. At the end we present a method on how to transfer the dry in-situ measured aerosol scattering coefficients to ambient values for the aerosol measured during summer and fall at this location
    • …
    corecore