885 research outputs found

    Increased metabolic activity in the septum and habenula during stress is linked to subsequent expression of learned helplessness behavior

    Get PDF
    Uncontrollable stress can have a profound effect on an organism's ability to respond effectively to future stressful situations. Behavior subsequent to uncontrollable stress can vary greatly between individuals, falling on a spectrum between healthy resilience and maladaptive learned helplessness. It is unclear whether dysfunctional brain activity during uncontrollable stress is associated with vulnerability to learned helplessness; therefore, we measured metabolic activity during uncontrollable stress that correlated with ensuing inability to escape future stressors. We took advantage of small animal positron emission tomography (PET) and 2-deoxy-2[(18)F]fluoro-D-glucose ((18)FDG) to probe in vivo metabolic activity in wild type Sprague Dawley rats during uncontrollable, inescapable, unpredictable foot-shock stress, and subsequently tested the animals response to controllable, escapable, predictable foot-shock stress. When we correlated metabolic activity during the uncontrollable stress with consequent behavioral outcomes, we found that the degree to which animals failed to escape the foot-shock correlated with increased metabolic activity in the lateral septum and habenula. When used a seed region, metabolic activity in the habenula correlated with activity in the lateral septum, hypothalamus, medial thalamus, mammillary nuclei, ventral tegmental area, central gray, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and rostromedial tegmental nucleus, caudal linear raphe, and subiculum transition area. Furthermore, the lateral septum correlated with metabolic activity in the preoptic area, medial thalamus, habenula, interpeduncular nuclei, periaqueductal gray, dorsal raphe, and caudal linear raphe. Together, our data suggest a group of brain regions involved in sensitivity to uncontrollable stress involving the lateral septum and habenula

    Bartonella rochalimae in Raccoons, Coyotes, and Red Foxes

    Get PDF
    To determine additional reservoirs for Bartonella rochalimae, we examined samples from several wildlife species. We isolated B. rochalimae from 1 red fox near Paris, France, and from 11 raccoons and 2 coyotes from California, USA. Co-infection with B. vinsonii subsp. berkhoffii was documented in 1 of the coyotes

    Generation of nonground-state Bose-Einstein condensates by modulating atomic interactions

    Full text link
    A technique is proposed for creating nonground-state Bose-Einstein condensates in a trapping potential by means of the temporal modulation of atomic interactions. Applying a time-dependent spatially homogeneous magnetic field modifies the atomic scattering length. An alternating modulation of the scattering length excites the condensate, which, under special conditions, can be transferred to an excited nonlinear coherent mode. It is shown that there occurs a phase-transition-like behavior in the time-averaged population imbalance between the ground and excited states. The application of the suggested technique to realistic experimental conditions is analyzed and it is shown that the considered effect can be realized for experimentally available condensates.Comment: 6 pages, 2 figures, 1 tabl

    Notes on Conformal Invisibility Devices

    Get PDF
    As a consequence of the wave nature of light, invisibility devices based on isotropic media cannot be perfect. The principal distortions of invisibility are due to reflections and time delays. Reflections can be made exponentially small for devices that are large in comparison with the wavelength of light. Time delays are unavoidable and will result in wave-front dislocations. This paper considers invisibility devices based on optical conformal mapping. The paper shows that the time delays do not depend on the directions and impact parameters of incident light rays, although the refractive-index profile of any conformal invisibility device is necessarily asymmetric. The distortions of images are thus uniform, which reduces the risk of detection. The paper also shows how the ideas of invisibility devices are connected to the transmutation of force, the stereographic projection and Escheresque tilings of the plane

    Machine-learned climate model corrections from a global storm-resolving model

    Full text link
    Due to computational constraints, running global climate models (GCMs) for many years requires a lower spatial grid resolution (50{\gtrsim}50 km) than is optimal for accurately resolving important physical processes. Such processes are approximated in GCMs via subgrid parameterizations, which contribute significantly to the uncertainty in GCM predictions. One approach to improving the accuracy of a coarse-grid global climate model is to add machine-learned state-dependent corrections at each simulation timestep, such that the climate model evolves more like a high-resolution global storm-resolving model (GSRM). We train neural networks to learn the state-dependent temperature, humidity, and radiative flux corrections needed to nudge a 200 km coarse-grid climate model to the evolution of a 3~km fine-grid GSRM. When these corrective ML models are coupled to a year-long coarse-grid climate simulation, the time-mean spatial pattern errors are reduced by 6-25% for land surface temperature and 9-25% for land surface precipitation with respect to a no-ML baseline simulation. The ML-corrected simulations develop other biases in climate and circulation that differ from, but have comparable amplitude to, the baseline simulation

    Emulating Fast Processes in Climate Models

    Full text link
    Cloud microphysical parameterizations in atmospheric models describe the formation and evolution of clouds and precipitation, a central weather and climate process. Cloud-associated latent heating is a primary driver of large and small-scale circulations throughout the global atmosphere, and clouds have important interactions with atmospheric radiation. Clouds are ubiquitous, diverse, and can change rapidly. In this work, we build the first emulator of an entire cloud microphysical parameterization, including fast phase changes. The emulator performs well in offline and online (i.e. when coupled to the rest of the atmospheric model) tests, but shows some developing biases in Antarctica. Sensitivity tests demonstrate that these successes require careful modeling of the mixed discrete-continuous output as well as the input-output structure of the underlying code and physical process.Comment: Accepted at the Machine Learning and the Physical Sciences Workshop at the 36th conference on Neural Information Processing Systems (NeurIPS) December 3, 202

    Light-like polygonal Wilson loops in 3d Chern-Simons and ABJM theory

    Full text link
    We study light-like polygonal Wilson loops in three-dimensional Chern-Simons and ABJM theory to two-loop order. For both theories we demonstrate that the one-loop contribution to these correlators cancels. For pure Chern-Simons, we find that specific UV divergences arise from diagrams involving two cusps, implying the loss of finiteness and topological invariance at two-loop order. Studying those UV divergences we derive anomalous conformal Ward identities for n-cusped Wilson loops which restrict the finite part of the latter to conformally invariant functions. We also compute the four-cusp Wilson loop in ABJM theory to two-loop order and find that the result is remarkably similar to that of the corresponding Wilson loop in N=4 SYM. Finally, we speculate about the existence of a Wilson loop/scattering amplitude relation in ABJM theory.Comment: 37 pages, many figures; v2: references added, minor changes; v3: references added, sign error fixed and note adde

    Self-duality of the D1-D5 near-horizon

    Get PDF
    We explore fermionic T-duality and self-duality in the geometry AdS3 x S3 x T4 in type IIB supergravity. We explicitly construct the Killing spinors and the fermionic T-duality isometries and show that the geometry is self-dual under a combination of two bosonic AdS3 T-dualities, four fermionic T-dualities and either two additional T-dualities along T4 or two T-dualities along S3. In addition, we show that the presence of a B-field acts as an obstacle to self-duality, a property attributable to S- duality and fermionic T-duality not commuting. Finally, we argue that fermionic T-duality may be extended to CY2 = K3, a setting where we cannot explicitly construct the Killing spinors.Comment: 24 pages, references added, changes made to reinforce the point that S-duality and fermionic T-duality generically do not commute, version accepted to JHE
    corecore