61 research outputs found

    A novel haemocytometric covid-19 prognostic score developed and validated in an observational multicentre european hospital-based study

    Get PDF
    COVID-19 induces haemocytometric changes. Complete blood count changes, including new cell activation parameters, from 982 confirmed COVID-19 adult patients from 11 European hospitals were retrospectively analysed for distinctive patterns based on age, gender, clinical severity, symptom duration and hospital days. The observed haemocytometric patterns formed the basis to develop a multi-haemocytometric-parameter prognostic score to predict, during the first three days after presentation, which patients will recover without ventilation or deteriorate within a two-week timeframe, needing intensive care or with fatal outcome. The prognostic score, with ROC curve AUC at baseline of 0.753 (95% CI 0.723-0.781) increasing to 0.875 (95% CI 0.806-0.926) on day 3, was superior to any individual parameter at distinguishing between clinical severity. Findings were confirmed in a validation cohort. Aim is that the score and haemocytometry results are simultaneously provided by analyser software, enabling wide applicability of the score as haemocytometry is commonly requested in COVID-19 patients

    Detection and localization of early- and late-stage cancers using platelet RNA

    Get PDF
    Cancer patients benefit from early tumor detection since treatment outcomes are more favorable for less advanced cancers. Platelets are involved in cancer progression and are considered a promising biosource for cancer detection, as they alter their RNA content upon local and systemic cues. We show that tumor-educated platelet (TEP) RNA-based blood tests enable the detection of 18 cancer types. With 99% specificity in asymptomatic controls, thromboSeq correctly detected the presence of cancer in two-thirds of 1,096 blood samples from stage I–IV cancer patients and in half of 352 stage I–III tumors. Symptomatic controls, including inflammatory and cardiovascular diseases, and benign tumors had increased false-positive test results with an average specificity of 78%. Moreover, thromboSeq determined the tumor site of origin in five different tumor types correctly in over 80% of the cancer patients. These results highlight the potential properties of TEP-derived RNA panels to supplement current approaches for blood-based cancer screening

    Colorectal liver metastases: Surgery versus thermal ablation (COLLISION) - a phase III single-blind prospective randomized controlled trial

    Get PDF
    Background: Radiofrequency ablation (RFA) and microwave ablation (MWA) are widely accepted techniques to eliminate small unresectable colorectal liver metastases (CRLM). Although previous studies labelled thermal ablation inferior to surgical resection, the apparent selection bias when comparing patients with unresectable disease to surgical candidates, the superior safety profile, and the competitive overall survival results for the more recent reports mandate the setup of a randomized controlled trial. The objective of the COLLISION trial is to prove non-inferiority of thermal ablation compared to hepatic resection in patients with at least one resectable and ablatable CRLM and no extrahepatic disease. Methods: In this two-arm, single-blind multi-center phase-III clinical trial, six hundred and eighteen patients with at least one CRLM (≤3cm) will be included to undergo either surgical resection or thermal ablation of appointed target lesion(s) (≤3cm). Primary endpoint is OS (overall survival, intention-to-treat analysis). Main secondary endpoints are overall disease-free survival (DFS), time to progression (TTP), time to local progression (TTLP), primary and assisted technique efficacy (PTE, ATE), procedural morbidity and mortality, length of hospital stay, assessment of pain and quality of life (QoL), cost-effectiveness ratio (ICER) and quality-adjusted life years (QALY). Discussion: If thermal ablation proves to be non-inferior in treating lesions ≤3cm, a switch in treatment-method may lead to a reduction of the post-procedural morbidity and mortality, length of hospital stay and incremental costs without compromising oncological outcome for patients with CRLM. Trial registration:NCT03088150 , January 11th 2017

    Editorial for “Dual-Frequency MR Elastography to Differentiate Between Inflammation and Fibrosis of the Liver: Comparison With Histopathology”

    No full text
    Level of Evidence: 5. Technical Efficacy: Stage 2

    Analysis and improvement of motion encoding in magnetic resonance elastography

    Full text link
    Magnetic resonance elastography (MRE) utilizes phase contrast magnetic resonance imaging (MRI), which is phase locked to externally generated mechanical vibrations, to measure the three-dimensional wave displacement field. At least four measurements with linear-independent encoding directions are necessary to correct for spurious phase contributions if effects from imaging gradients are non-negligible. In MRE, three encoding schemes have been used: unbalanced four- and six-point and balanced four-point ('tetrahedral') encoding. The first two sensitize to motion with orthogonal gradients, with the four-point method acquiring a single reference scan without motion sensitization, whereas three additional scans with inverted gradients are used with six-point encoding, leading to two-fold higher displacement-to-noise ratio (DNR) and 50% longer scan duration. Balanced four-point (tetrahedral) encoding encodes along the four diagonals of a cube, with one direction serving as a reference for the other three encoding directions, similar to four-point encoding. The objective of this work is to introduce a theoretical framework to compare different motion sensitization strategies with respect to their motion encoding efficiency in two fundamental encoding limits, the gradient strength limit and the dynamic range limit, which are both placed in relation to conventional gradient recalled echo (GRE)- and spin echo (SE)-based MRE sequences. We apply the framework to the three aforementioned schemes and show that the motion encoding efficiency of unbalanced four- and six-point encoding schemes in the gradient-limited regime can be increased by a factor of 1.5 when using all physical gradient channels concurrently. Furthermore, it is demonstrated that reversing the direction of the reference in balanced four-point (tetrahedral) encoding results in the Hadamard encoding scheme, which leads to increased DNR by 2 compared with balanced four-point encoding and 2.8 compared with unbalanced four-point encoding. As an example, we show that optimal encoding can be utilized to reduce the acquisition time of standard liver MRE in vivo from four to two breath holds

    Analysis and improvement of motion encoding in magnetic resonance elastography

    No full text
    Magnetic resonance elastography (MRE) utilizes phase contrast magnetic resonance imaging (MRI), which is phase locked to externally generated mechanical vibrations, to measure the three-dimensional wave displacement field. At least four measurements with linear-independent encoding directions are necessary to correct for spurious phase contributions if effects from imaging gradients are non-negligible. In MRE, three encoding schemes have been used: unbalanced four- and six-point and balanced four-point (‘tetrahedral’) encoding. The first two sensitize to motion with orthogonal gradients, with the four-point method acquiring a single reference scan without motion sensitization, whereas three additional scans with inverted gradients are used with six-point encoding, leading to two-fold higher displacement-to-noise ratio (DNR) and 50% longer scan duration. Balanced four-point (tetrahedral) encoding encodes along the four diagonals of a cube, with one direction serving as a reference for the other three encoding directions, similar to four-point encoding. The objective of this work is to introduce a theoretical framework to compare different motion sensitization strategies with respect to their motion encoding efficiency in two fundamental encoding limits, the gradient strength limit and the dynamic range limit, which are both placed in relation to conventional gradient recalled echo (GRE)- and spin echo (SE)-based MRE sequences. We apply the framework to the three aforementioned schemes and show that the motion encoding efficiency of unbalanced four- and six-point encoding schemes in the gradient-limited regime can be increased by a factor of 1.5 when using all physical gradient channels concurrently. Furthermore, it is demonstrated that reversing the direction of the reference in balanced four-point (tetrahedral) encoding results in the Hadamard encoding scheme, which leads to increased DNR by compared with balanced four-point encoding and 2.8 compared with unbalanced four-point encoding. As an example, we show that optimal encoding can be utilized to reduce the acquisition time of standard liver MRE in vivo from four to two breath holds

    Water mobility during drying of hard and soft type latex : Systematic GARField <sup>1</sup>H NMR relaxometry studies

    Get PDF
    GARField 1H NMR relaxometry experiments were done to study the drying process of two latices with different polymer Tg and to elucidate water mobility behavior during this process. It was found that the hard type latex, with a polymer Tg above room temperature, dries faster than the soft type latex, with a polymer Tg below room temperature. Diffusion measurements by means of echo time variations at different moments in the drying process show that water auto-diffusion decreases with increasing solid content of the latex independent of particle Tg. Two pools of protons with different mobilities were observed based on transversal relaxation T2. Determination of the long T2,long's and short T2,short's of both latex dispersions and their respective proton densities during drying at 80% RH showed evidence of particle deformation for the soft type latex and the absence thereof for the hard type latex. Additional drying of the resulting coatings with anhydrous CaCl2 showed a higher porosity for the hard type coating based on the proton distribution profile width. Moreover, two domains with different polymer proton mobilities are found for both coatings that are both plasticized by water at 80% RH. This is more apparent for the hard type coating, suggesting that a more hydrophilic polymer gives a higher degree of plasticization.</p
    corecore