278 research outputs found

    Current editorial challenges

    Get PDF
    Since its foundation in 2002, Experimental and Clinical Sciences (EXCLI Journal) published more than 760 original articles and reviews, particularly in the field of cancer research (Abbastabar et al., 2018; Nojadeh et al., 2018; Karimian et al., 2018), cell biology (Li et al., 2017; Niknami et al., 2017; Ahmadi et al., 2017), toxicology (Randjelovic et al., 2017; Hassani et al., 2018; Nakhaee and Mehrpour, 2018), neurosciences (Farajdokht et al., 2017; Ebrahimi et al., 2017), drug discovery (Li et al., 2018; Khedher et al., 2017) and immunology (Fahimi et al., 2018; Sarvari et al., 2018). However, the editors are keen to keep a broad view of science and technology and also welcome manuscripts from other fields of life sciences and interdisciplinary studies. Our main criterion during the review process is the scientific quality of the study. Editors and reviewers focus particularly on whether the methods are sufficiently described, results are presented in a transparent way, have been sufficiently reproduced in independent experiments and justify the main conclusions. If this is the case, also confirmatory studies or studies reporting negative results may be published. Each manuscript should include a statement on the aim of the study and convincingly explain why the experiments are relevant. While a high degree of novelty is welcome, it is not our most important criterion in selecting manuscripts for publication

    Natural Killer Cells and Liver Fibrosis

    Get PDF
    In the 40 years since the discovery of natural killer (NK) cells, it has been well established that these innate lymphocytes are important for early and effective immune responses against transformed cells and infections with different pathogens. In addition to these classical functions of NK cells, we now know that they are part of a larger family of innate lymphoid cells and that they can even mediate memory-like responses. Additionally, tissue-resident NK cells with distinct phenotypical and functional characteristics have been identified. Here, we focus on the phenotype of different NK cell subpopulations that can be found in the liver and summarize the current knowledge about the functional role of these cells with a special emphasis on liver fibrosis. NK cell cytotoxicity can contribute to liver damage in different forms of liver disease. However, NK cells can limit liver fibrosis by killing hepatic stellate cell-derived myofibroblasts, which play a key role in this pathogenic process. Therefore, liver NK cells need to be tightly regulated in order to balance these beneficial and pathological effects

    Hepatotoxic pyrrolizidine alkaloids induce DNA damage response in rat liver in a 28-day feeding study

    Get PDF
    Pyrrolizidine alkaloids (PA) are secondary plant metabolites that occur as food and feed contaminants. Acute and subacute PA poisoning can lead to severe liver damage in humans and animals, comprising liver pain, hepatomegaly and the development of ascites due to occlusion of the hepatic sinusoids (veno-occlusive disease). Chronic exposure to low levels of PA can induce liver cirrhosis and liver cancer. However, it is not well understood which transcriptional changes are induced by PA and whether all hepatotoxic PA, regardless of their structure, induce similar responses. Therefore, a 28-day subacute rat feeding study was performed with six structurally different PA heliotrine, echimidine, lasiocarpine, senecionine, senkirkine, and platyphylline, administered at not acutely toxic doses from 0.1 to 3.3 mg/kg body weight. This dose range is relevant for humans, since consumption of contaminated tea may result in doses of ~ 8 µg/kg in adults and cases of PA ingestion by contaminated food was reported for infants with doses up to 3 mg/kg body weight. ALT and AST were not increased in all treatment groups. Whole-genome microarray analyses revealed pronounced effects on gene expression in the high-dose treatment groups resulting in a set of 36 commonly regulated genes. However, platyphylline, the only 1,2-saturated and, therefore, presumably non-hepatotoxic PA, did not induce significant expression changes. Biological functions identified to be affected by high-dose treatments (3.3 mg/kg body weight) comprise cell-cycle regulation associated with DNA damage response. These functions were found to be affected by all analyzed 1,2-unsaturated PA.publishedVersio

    Characterization of a Fetal Liver Cell Population Endowed with Long-Term Multiorgan Endothelial Reconstitution Potential.

    Get PDF
    Stable reconstitution of vascular endothelial beds upon transplantation of progenitor cells represents an important challenge due to the paucity and generally limited integration/expansion potential of most identified vascular related cell subsets. We previously showed that mouse fetal liver (FL) hemato/vascular cells from day 12 of gestation (E12), expressing the Stem Cell Leukaemia (SCL) gene enhancer transgene (SCL-PLAP+ cells), had robust endothelial engraftment potential when transferred to the blood stream of newborns or adult conditioned recipients, compared to the scarce vascular contribution of adult bone marrow cells. However, the specific SCL-PLAP+ hematopoietic or endothelial cell subset responsible for the long-term reconstituting endothelial cell (LTR-EC) activity and its confinement to FL developmental stages remained unknown. Using a busulfan-treated newborn transplantation model, we show that LTR-EC activity is restricted to the SCL-PLAP+ VE-cadherin+ CD45- cell population, devoid of hematopoietic reconstitution activity and largely composed by Lyve1+ endothelial-committed cells. SCL-PLAP+ Ve-cadherin+ CD45- cells contributed to the liver sinusoidal endothelium and also to the heart, kidney and lung microvasculature. LTR-EC activity was detected at different stages of FL development, yet marginal activity was identified in the adult liver, revealing unknown functional differences between fetal and adult liver endothelial/endothelial progenitors. Importantly, the observations that expanding donor-derived vascular grafts colocalize with proliferating hepatocyte-like cells and participate in the systemic circulation, support their functional integration into young livers. These findings offer new insights into the engraftment, phonotypical, and developmental characterization of a novel endothelial/endothelial progenitor cell subtype with multiorgan LTR-EC activity, potentially instrumental for the treatment/genetic correction of vascular diseases. Stem Cells 2017;35:507-521.Spanish Ministry of Economy and Competitiveness (Grant IDs: BFU2010- 15801, CSD-2007-00008), Junta de Andalucıa Regional Government (Grant ID: CVI-295), European Regional Development Funds, Wellcome Trust, Medical Research CouncilThis is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/stem.249

    Model prediction and validation of an order mechanism controlling the spatio-temporal phenotype of early hepatocellular carcinoma

    Get PDF
    The aggressiveness of a tumor may be reflected by its micro-architecture. To gain a deeper understanding of the mechanisms controlling spatial organization of tumors at early stages after tumor initiation, we used an agent-based spatio-temporal model previously established to simulate features of liver regeneration. Here, this model was further developed to simulate scenarios in early tumor development, when individual initiated hepatocytes gain increased proliferation capacity. The model simulations were performed in realistic liver microarchitectures obtained from 3D reconstruction of confocal laser scanning micrographs. Interestingly, the here established model predicted that initially initiated hepatocytes arrange in elongated patterns. Only when the tumor progresses to cell numbers of approximately 4,000, it adopts spherical structures. This model prediction was validated by the analysis of initiated cells in a rat liver tumor initiation study using single doses of 250 mg/kg of the genotoxic carcinogen Nnitrosomorpholine (NNM). Indeed, small clusters of GST-P positive cells induced by NNM were elongated, almost columnar, while larger GDT-P positive foci of approximately the size of liver lobuli, adopted spherical shapes. Simulation of numerous possible mechanisms demonstrated that only hepatocyte-sinusoidal-alignment (HSA), a previously discovered order mechanism involved in coordination of liver tissue architecture, could explain the experimentally observed initial deviation from sphericalshape. The present study demonstrates that the architecture of small hepatocellular tumor cell clusters early after initiation is still controlled by physiological control mechanisms. However, this coordinating influence is lost when the tumor grows to approximately 4,000 cells, leading to further growth in spherical shape. Our findings stress the potential importance of organ micro-architecture in understanding tumor phenotypes

    Kinetic modeling of stem cell transcriptome dynamics to identify regulatory modules of normal and disturbed neuroectodermal differentiation

    Get PDF
    Thousands of transcriptome data sets are available, but approaches for their use in dynamic cell response modelling are few, especially for processes affected simultaneously by two orthogonal influencing variables. We approached this problem for neuroepithelial development of human pluripotent stem cells (differentiation variable), in the presence or absence of valproic acid (signaling variable). Using few basic assumptions (sequential differentiation states of cells; discrete on/off states for individual genes in these states), and time-resolved transcriptome data, a comprehensive model of spontaneous and perturbed gene expression dynamics was developed. The model made reliable predictions (average correlation of 0.85 between predicted and subsequently tested expression values). Even regulations predicted to be non-monotonic were successfully validated by PCR in new sets of experiments. Transient patterns of gene regulation were identified from model predictions. They pointed towards activation of Wnt signaling as a candidate pathway leading to a redirection of differentiation away from neuroepithelial cells towards neural crest. Intervention experiments, using a Wnt/beta-catenin antagonist, led to a phenotypic rescue of this disturbed differentiation. Thus, our broadly applicable model allows the analysis of transcriptome changes in complex time/perturbation matrices

    Algorithm for J-Integral Measurements by Digital Image Correlation

    Get PDF
    The work is devoted to the testing of the algorithm for calculating J-integral based on the construction of vector fields by digital image correlation (DIC) method. A comparative analysis of J-integral values calculated using DIC and instrumental data obtained in accordance with ASTM E 1820 "Standard Test Method for Measurement of Fracture Toughness" has made. It is shown that this approach can be used for cases when the standard technique for measuring the J-integral cannot be applied, or the standard technique does not allow achieving the required accuracy for the integral determination in local areas of the loaded material
    corecore