3,089 research outputs found
Type-Inference Based Short Cut Deforestation (nearly) without Inlining
Deforestation optimises a functional program by transforming it into another one that does not create certain intermediate data structures. In [ICFP'99] we presented a type-inference based deforestation algorithm which performs extensive inlining. However, across module boundaries only limited inlining is practically feasible. Furthermore, inlining is a non-trivial transformation which is therefore best implemented as a separate optimisation pass. To perform short cut deforestation (nearly) without inlining, Gill suggested to split definitions into workers and wrappers and inline only the small wrappers, which transfer the information needed for deforestation. We show that Gill's use of a function build limits deforestation and note that his reasons for using build do not apply to our approach. Hence we develop a more general worker/wrapper scheme without build. We give a type-inference based algorithm which splits definitions into workers and wrappers. Finally, we show that we can deforest more expressions with the worker/wrapper scheme than the algorithm with inlining
Three-dimensionally confined diluted magnetic semiconductor clusters. Zn1−xMnxS
We report the first example of a dilute magnetic semiconductor (DMS) confined in all three dimensions (DMS quantum dot). Zn0.93Mn0.07S clusters of not, vert, similar 25 Å diameter are successfully synthesized inside a glass matrix and fully characterized by chemical analysis, x-ray diffraction, extended x-ray absorption fine structure (EXAFS), and photoluminescence spectroscopy. Effect of size quantization on the exciton energy has been observed. Preliminary magnetic susceptibility data are presented and discussed
Specific metaphase and interphase detection of the breakpoint region in 8q24 of burkitt lymphoma cells by triple-color fluorescence in situ hybridization
Triple fluorescence in situ hybridization with a plasmid DNA library from sorted human chromosomes 8 in combination with bacteriophage clones flanking the breakpoint in 8q24 of the Burkitt lymphoma cell line Jl was used for the specific delineation of this breakpoint in individual tumor cells. With this approach, tumor-specific breakpoints in translocation chromosomes can be detected at all stages of the cell cycle with high specificity
Logical Step-Indexed Logical Relations
Appel and McAllester's "step-indexed" logical relations have proven to be a
simple and effective technique for reasoning about programs in languages with
semantically interesting types, such as general recursive types and general
reference types. However, proofs using step-indexed models typically involve
tedious, error-prone, and proof-obscuring step-index arithmetic, so it is
important to develop clean, high-level, equational proof principles that avoid
mention of step indices. In this paper, we show how to reason about binary
step-indexed logical relations in an abstract and elegant way. Specifically, we
define a logic LSLR, which is inspired by Plotkin and Abadi's logic for
parametricity, but also supports recursively defined relations by means of the
modal "later" operator from Appel, Melli\`es, Richards, and Vouillon's "very
modal model" paper. We encode in LSLR a logical relation for reasoning
relationally about programs in call-by-value System F extended with general
recursive types. Using this logical relation, we derive a set of useful rules
with which we can prove contextual equivalence and approximation results
without counting steps
An accurate description of quantum size effects in InP nanocrystallites over a wide range of sizes
We obtain an effective parametrization of the bulk electronic structure of
InP within the Tight Binding scheme. Using these parameters, we calculate the
electronic structure of InP clusters with the size ranging upto 7.5 nm. The
calculated variations in the electronic structure as a function of the cluster
size is found to be in excellent agreement with experimental results over the
entire range of sizes, establishing the effectiveness and transferability of
the obtained parameter strengths.Comment: 9 pages, 3 figures, pdf file available at
http://sscu.iisc.ernet.in/~sampan/publications.htm
Adsorption of 2,2 '-dithiodipyridine as a tool for the assembly of silver nanoparticles
Silver nanostructured thin films stabilized by 2,2’-dithiodipyridine (2dtpy) were prepared. The Ag nanoparticles
were obtained by treating the complex [Ag(2dtpy)]NO3 with NaBH4 in a methanol–toluene mixture. The films
were transferred to borosilicate glass slips by a dip-coating method and were found to consist of Ag
nanoparticles possibly linked via 2dtpy molecules. Surface-enhanced Raman scattering (SERS) studies have
offered the possibility of investigating the adsorption modes of 2dtpy at the Ag nanoparticle surfaces in the
fil
Irradiation-induced Ag nanocluster nucleation in silicate glasses: analogy with photography
The synthesis of Ag nanoclusters in sodalime silicate glasses and silica was
studied by optical absorption (OA) and electron spin resonance (ESR)
experiments under both low (gamma-ray) and high (MeV ion) deposited energy
density irradiation conditions. Both types of irradiation create electrons and
holes whose density and thermal evolution - notably via their interaction with
defects - are shown to determine the clustering and growth rates of Ag
nanocrystals. We thus establish the influence of redox interactions of defects
and silver (poly)ions. The mechanisms are similar to the latent image formation
in photography: irradiation-induced photoelectrons are trapped within the glass
matrix, notably on dissolved noble metal ions and defects, which are thus
neutralized (reverse oxidation reactions are also shown to exist). Annealing
promotes metal atom diffusion, which in turn leads to cluster nuclei formation.
The cluster density depends not only on the irradiation fluence, but also - and
primarily - on the density of deposited energy and the redox properties of the
glass. Ion irradiation (i.e., large deposited energy density) is far more
effective in cluster formation, despite its lower neutralization efficiency
(from Ag+ to Ag0) as compared to gamma photon irradiation.Comment: 48 pages, 18 figures, revised version publ. in Phys. Rev. B, pdf fil
Synthesis of CdS and CdSe nanocrystallites using a novel single-molecule precursors approach
The synthesis of CdS and CdSe nanocrystallites using the thermolysis of several dithioor
diselenocarbamato complexes of cadmium in trioctylphosphine oxide (TOPO) is reported.
The nanodispersed materials obtained show quantum size effects in their optical spectra
and exhibit near band-edge luminescence. The influence of experimental parameters on
the properties of the nanocrystallites is discussed. HRTEM images of these materials show
well-defined, crystalline nanosized particles. Standard size fractionation procedures can
be performed in order to narrow the size dispersion of the samples. The TOPO-capped CdS
and CdSe nanocrystallites and simple organic bridging ligands, such as 2,2¢-bipyrimidine,
are used as the starting materials for the preparation of novel nanocomposites. The optical
properties shown by these new nanocomposites are compared with those of the starting
nanodispersed materials
- …
