
Type-Inference Based Short Cut Deforestation
(nearly) without Inlining

— Work in Progress —

Olaf Chitil

Lehrstuhl für Informatik II, RWTH Aachen,
52056 Aachen, Germany

chitil@informatik.rwth-aachen.de

Abstract

Deforestation optimises a functional program by transforming it into another one
that does not create certain intermediate data structures. In [Chi99] we presented a
type-inference based deforestation algorithm which performs extensive inlining. How-
ever, across module boundaries only limited inlining is practically feasible. Furthermore,
inlining is a non-trivial transformation which is therefore best implemented as a sep-
arate optimisation pass. To perform short cut deforestation (nearly) without inlining,
Gill suggested to split definitions into workers and wrappers and inline only the small
wrappers, which transfer the information needed for deforestation. We show that Gill’s
use of a function build limits deforestation and note that his reasons for using build do
not apply to our approach. Hence we develop a more general worker/wrapper scheme
without build. We give a type-inference based algorithm which splits definitions into
workers and wrappers. Finally, we show that we can deforest more expressions with the
worker/wrapper scheme than the algorithm with inlining.

1 Type-Inference-Based Short Cut Deforestation

In lazy functional programs two functions are often glued together by an intermediate data
structure that is produced by one function and consumed by the other. For example, the
function any, which tests whether any element of a list xs satisfies a given predicate p, may
be defined as follows in Haskell [PH+99]:

any p xs = or (map p xs)

The function map applies p to all elements of xs yielding a list of boolean values. The
function or combines these boolean values with the logical or operation (||).

Although lazy evaluation makes this modular programming style practicable [Hug89], it
does not come for free. Each list cell has to be allocated, filled, taken apart and finally garbage
collected. The following monolithic definition of any is more efficient.

any p [] = False

any p (x:xs) = p x || any p xs

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Kent Academic Repository

https://core.ac.uk/display/63107?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

It is the aim of deforestation algorithms to automatically transform a functional program
into another one that does not create such intermediate data structures. We say that the
producer and the consumer of the data structure are fused .

1.1 Short Cut Deforestation

The fundamental idea of short cut deforestation is to restrict deforestation to intermediate
lists that are consumed by the function foldr. This higher-order function uniformly replaces
the constructors (:) in a list by a given function c and the empty list constructor [] by a
constant n:

foldr c n [x1, . . . , xk] = x1 ‘c‘ (x2 ‘c‘ (x3 ‘c‘ (. . . (xk ‘c‘ n) . . .)))

So if foldr consumes a list that is produced by an expression e, short cut deforestation
replaces the list constructors already at compile time. We cannot, however, simply replace all
list constructors in e. Consider e = (map p [1,2]). Here the constructors in [1,2] are not
to be replaced but those in the definition of map, which is not even part of e.

Therefore we need the producer e in a form such that the list constructors that build the
intermediate list are explicit and can easily be replaced. The convenient solution is to have
the producer in the form (\c n -> e′) (:) [] where the abstracted variables c and n mark
the intermediate list constructors (:) and []. Then fusion is performed by the simple rule:

foldr e(:) e[] ((\c n -> e′) (:) []) (\c n -> e′) e(:) e[]

The rule removes the intermediate list constructors. A subsequent β-reduction puts the
consumer components e(:) and e[] into the places that were before hold by the list constructors.

We observe that generally e(:) and e[] have different types from (:) and []. Hence for this
transformation to be type correct the function in the producer must be polymorphic. This can
be expressed in Haskell with the help of a special function build with a second-order type:

build :: (forall b. (a -> b -> b) -> b -> b) -> [a]

build g = g (:) []

foldr e(:) e[] (build ep) ep e(:) e[]

Here ep will always have the form \c n -> e′, but this is not necessary for the semantic
correctness of the transformation. Strikingly, the polymorphic type of ep already guarantees
the correctness. Intuitively, ep can only build its value of type b from its two term arguments,
because only these have the right types. The correctness has been proved in [GLP93, Gil96].

1.2 Derivation of Producers through Type Inference

Whereas using foldr for defining list consumers is generally considered as good, modular
programming style, programmers can hardly be demanded to use build. The idea of the
first works on short cut deforestation is that all list-manipulating functions in the standard
libraries are defined in terms of foldr and build. However, thus deforestation is confined to
producers that are defined in terms of these standard list functions.

On the other hand we see that, if we can transform a producer e of type [τ] into the form
build (\c n -> e′), then the type system guarantees that we have abstracted exactly those

list constructors that build the intermediate list. Based on this observation we presented in
[Chi99] a type-inference based algorithm which abstracts the intermediate list type and its
constructors from a producer to obtain a build form.

For the producer map p [1,2] for example, this algorithm observes, that the intermediate
list is constructed by the function map. Therefore it inlines the body of map to be able to
proceed. Afterwards the algorithm decides that the list constructors in the body of map have
to be abstracted whereas the list constructors in [1,2] remain unchanged. With this result the
algorithm terminates successfully. In general, the algorithm recursively inlines all functions
that are needed to be able to derive the desired form of the producer, only bounded by an
arbitrary code size limit. We recapitulate the algorithm in more detail in Section 3.

1.3 The Problem of Inlining

It is neat that the algorithm determines exactly those functions which need to be inlined,
but nonetheless it causes problems in practise. Inlining across module boundaries is usually
implemented by saving some small function definitions in a file when a module is compiled.
This file is read and used when a module is compiled which imports the former module.
Extensive inlining across module boundaries would defeat the idea of separate compilation.
In general, inlining, although trivial in principal, is in practise “a black art, full of delicate
compromises that work together to give good performance without unnecessary code bloat”
[PM99]. It is best implemented as a separate optimisation pass. Consequently, we would like
to use our list abstraction algorithm without it having to perform inlining itself.

Gill already suggested a method to separate short cut deforestation from inlining[Gil96]:
Each list-producing function definition is split into a worker and a wrapper. The latter is
small enough to be inlined everywhere, also across module boundaries, and transfers enough
information to permit short cut deforestation. Inlining can be performed subsequently to
improve the result of deforestation further. However, Gill’s use of build in wrappers limits
the expressibility of his worker/wrapper scheme. There are functions that cannot be defined
in terms of build and hence cannot be deforested within Gill’s worker/wrapper scheme, but
that can be deforested by our type-inference based algorithm with inlining. Fortunately,
the function build turns out to be unnecessary for our type-inference based deforestation
algorithm. Hence we developed a more general worker/wrapper scheme without build. We
present it in Section 4.

Afterwards we show in Section 5 how the list-producing function definitions of a program
are split into wrappers and workers by an algorithm that is based on our type-inference based
algorithm without using inlining.

In Section 6 we present a class of recursively defined functions which cannot be deforested
by the algorithm with inlining but can be deforested within the worker/wrapper scheme.
However, to be able to split these function definitions into the required workers and wrappers
we need to extend our worker/wrapper split algorithm. As basis we use Mycroft’s extension
of the Damas-Milner type inference algorithm by polymorphic recursion [Myc84].

2 The second-order typed language

We use a small functional language with second-order types, which is similar to the interme-
diate language Core used inside the Glasgow Haskell compiler [GHC]. The syntax is defined
in Figure 1 and the type system in Figure 2. The language is essentially the second-order

Type constructors C ::= [] | Int | . . .
Type variables α, β, γ

Types τ ::= C τ | α | τ1 → τ2 | ∀α.τ
Term variables x, c

Terms e ::= x | λx : τ.e | e1 e2 | case e of {ci xi → ei}
k
i=1 |

let {xi : τi = ei}
k
i=1 in e | λα.e | e τ

Figure 1: Terms and types of the language

Γ + x : τ ⊢ x : τ
var

Γ + x : τ1 ⊢ e : τ2

Γ ⊢ λ(x : τ1).e : τ1 → τ2

term abs

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2

Γ ⊢ e1 e2 : τ
term app

∀i = 1..k Γ + {xj : τj}
k
j=1 ⊢ ei : τi Γ + {xj : τj}

k
j=1 ⊢ e : τ

Γ ⊢ let {xi : τi = ei}k
i=1 in e : τ

let

Γ ⊢ e : C ρ Γ(ci) = ∀α.ρi → C α Γ + {xi : ρi[ρ/α]} ⊢ ei : τ ∀i = 1..k

Γ ⊢ case e of {ci xi 7→ ei}k
i=1 : τ

case

Γ ⊢ e : τ α /∈ freeTyVar(Γ)

Γ ⊢ λα.e : ∀α.τ
type abs

Γ ⊢ e : ∀α.τ

Γ ⊢ e ρ : τ [ρ/α]
type app

Figure 2: Type system

typed λ-calculus augmented with let for arbitrary mutual recursion and case for decom-
position of algebraic data structures. We view a type environment Γ as both a mapping
from variables to types and a set of tuples x : τ . The operator + combines two type en-
vironments under the assumption that their domain is disjunct. We abbreviate Γ + {x : τ}
by Γ + x : τ . Data constructors c are just special term variables. The language does not
have explicit definitions of algebraic data types like data C α = c1 τ 1| . . . |ck τ k. Such a
definition is implicitly expressed by having the data constructors in the type environment:
Γ(ci) = τ1,i → . . . → τni,i → C α = τ i → C α. Hence for the polymorphic type list, which we
write [α] instead of [] α, we have Γ((:)) = ∀α.α →[α]→[α] and Γ([]) = ∀α.[α]. The
functions foldr and build are defined as follows

foldr : ∀α.∀β.(α → β → β) → β → [α] → β
= λα.λβ.λc:α → β → β.λn:β.λxs:[α]. case xs of {

[] → n

y:ys → c y (foldr α β c n ys)}

build : ∀α.(∀β.(α → β → β) → β → β) → [α]
= λα.λg:∀β.(α → β → β) → β → β. g [α] ((:) α) ([] α)

and the foldr/build rule takes the form:

foldr τ1 τ2 e(:) e[] (build τ1 ep) ep τ2 e(:) e[]

3 List Abstraction through Type Inference

To understand the mode of operation of the list abstraction algorithm of [Chi99] we study an
example. We have to start with the typing of the producer:1

{map’ : (Int→Int)→ [Int] → [Int], g : Int→Int, 1 : Int, 2 : Int,
(:) :∀α.α → [α] → [α], [] :∀α.[α]}
⊢ map’ g ((:) Int 1 ((:) Int 2 ([] Int))) : [Int]

The algorithm replaces every list constructor application (:) τ , respectively [] τ , by a
different variable ci, respectively ni. To use the existing type annotations as far as possible,
we just replace every list type2 in the expression and in the type environment by a new type
inference variable. Furthermore, we add ci : τ → γi → γi, respectively ni : γi, to the type
environment, where γi is a new type inference variable for every variable ci, respectively ni.

{map’ : (Int→Int)→ γ1 → γ2, g : Int→Int, 1 : Int, 2 : Int,
n1 : γ3, c1 : Int→ γ4 → γ4, c2 : Int→ γ5 → γ5}
⊢ map’ g (c1 1 (c2 2 n1)) : γ

This typing with type variables is the input to a modified version of the Damas-Milner
type inference algorithm [DM82, LY98]. On the one hand the algorithm was extended to cope
with explicit type abstraction and application. On the other hand the type generalisation step
(type closure) at let bindings was dropped. The type inference algorithm replaces some of
the type variables so that the typing is again derivable from the type inference rules, that is,
the expression is well-typed in the type environment. Note that type inference cannot fail,
because the typing we start with is derivable. We just try to find a more general typing.

{map’ : (Int→Int)→ γ1 → γ, g : Int→Int, 1 : Int, 2 : Int,
n1 : γ1, c1 : Int→ γ1 → γ1, c2 : Int→ γ1 → γ1}
⊢ map’ g (c1 1 (c2 2 n1)) : γ

The type of the expression is a type variable which can be abstracted, but this type variable
also appears in the type of the function map’. So the the definition of map’ has to be inlined, all
lists types and list constructors be replaced by new variables and type inference be continued.

{g : Int→Int, 1 : Int, 2 : Int, n1 : [Int], n2 : γ,
c1 : Int→[Int]→[Int], c2 : Int→[Int]→[Int], c3 : Int→ γ → γ}
⊢ let map’ : (Int→Int)→[Int]→ γ

= λf:Int→Int. foldr Int γ (λv:Int. λw:γ.c3 (f v) w) n3

in map’ g (c2 1 (c3 2 n2)) : γ

1We only consider a monomorphic version of map. Polymorphic functions that may be inlined require an
additional instantiation step which we skip here (see [Chi99], Section 4.2).

2We only need to replace the type [Int], because it is the type to be abstracted from. We are not permitted
to replace list types which contain locally bound type variables.

Now the type of the expression is still a type variable that, however, does not occur in
the type environment except in the types of the ci and ni. Hence the algorithm terminates
successfully. The type environment tells us that c1 and n1 construct the result of the producer
whereas c2, c3, and n2 have to construct lists that are internal to the producer. So the
producer can be expressed with abstracted list type and list constructors as follows, suitable
as argument for build:

λγ. λc:Int → γ → γ. λn:γ.
let map’ : (Int→Int)→[Int]→ γ

= λf:Int→Int. foldr Int γ (λv:Int. λw:γ. c (f v) w) n

in map’ g ((:) Int 1 ((:) Int 2 ([] Int)))

4 The Worker/Wrapper Scheme

To apply the foldr/build rule we do not need to fully inspect the consumer and the producer.
We only have to see that the consumer is in foldr form and the producer is in build form.
The other arguments of foldr and the argument of build are of no interest, they are just
rearranged by the transformation. This observation is the basis for obtaining producers in
build form without inlining of large expressions.

4.1 Gill’s Worker/Wrapper Scheme

Gill ([Gil96], Section 7.4) takes the definition of a list producer function from which the list
constructors are abstracted

f x1 . . . xn = build (\c n -> e)

and splits it into a definition of two functions, a worker fW and a wrapper f:

fW x1 . . . xn c n = e
f x1 . . . xn = build (fW x1 . . . xn)

The wrapper just contains the build and a call to the worker. It is small enough to be
inlined at all its call sites. For example, the definition

map f xs = build (\c n -> foldr (c . f) n xs)

is split up as follows:

mapW :: (a -> b) -> [a] -> (b -> c -> c) -> c -> c

mapW f xs c n = foldr (c . f) n xs

map f xs = build (mapW f xs)

Consider deforestation of the definition body of any that was given first in the introduction:

or (map p xs) foldr (||) True (build (mapW f xs)) mapW f xs (||) True

First or and map are inlined. Then fusion is performed by the foldr/build rule. Afterwards it
is left to the standard inliner, if mapW is inlined. This will be the case for this simple example,
but not in general. In any case the expression has been deforested.

4.2 The Limitations of build

The use of build unfortunately limits the scope of Gill’s worker/wrapper scheme. In [Chi99]
we showed that the type-inference based algorithm can abstract the list constructors from the
producer fst (unzip zs), where the function unzip maps a list of pairs to a pair of lists. To
abstract the list the algorithm inlines the definition of unzip. The function unzip cannot be
expressed in terms of build, because build can only wrap a producer that returns a single list.
So if we replace the inlining of the type abstraction algorithm by using Gill’s worker/wrapper
scheme we loose the ability to fuse a consumer with fst (unzip zs).

There is also a second problem which is related to our list abstraction algorithm. We still
want to use it — without inlining — to abstract the intermediate list constructors from the
producer, because not all producers will already be in build form after inlining of wrappers.
However, a build in the producer hinders the type-inference algorithm. For example from the
producer build (mapW f xs) no list constructors can be abstracted, because they are hidden
by build. We have to inline build to proceed with list constructor abstraction.

So, because build is both inflexible and is not needed but even disturbs the abstraction
of list constructors, we draw the obvious conclusion to do without it.

4.3 Short Cut Deforestation without build

The purpose of build is to express in Haskell that the producer has the required polymorphic
type and to prevent this special form from being destroyed by another compiler optimisa-
tion. Because we perform our transformation in a second-order typed language with explicit
type abstraction and application we can enforce the type requirement directly. Instead of
transforming a producer into the form

build τ (λβ. λc:τ → β → β. λn:β. e′)

we transform it into

(λβ. λc:τ → β → β. λn:β. e′) [τ] ((:) τ) ([] τ)

The short cut fusion rule now looks as follows:

for all e(:):τ → τ ′ → τ ′, e[]:τ
′, ep:∀γ.(τ → γ → γ)→ γ → γ

foldr τ τ ′ e(:) e[] (ep [τ] ((:) τ) ([] τ)) ep τ ′ e(:) e[]

The foldr/build rule looks more simple, because build is easier to recognise than the
producer form of the new rule. However, we neither have to construct nor to search for such
a producer form. Our short cut deforestation algorithm searches for occurrences of foldr,
abstracts the result list from the producer and then directly applies the short cut fusion rule.
Therefore we also do not have to worry that another compiler optimisation might β-reduce
the special producer form.

4.4 Wrappers without build

Similarly we do not use build in wrappers. As an example for our new worker/wrapper
scheme consider the worker and wrapper for the function map:

mapW : ∀α.∀β.∀γ. (β → γ → γ)→ γ → (α → β)→[α]→ γ
= λα. λβ. λγ. λc:β → γ → γ. λn:γ. λf:α → β.

foldr α γ (λv:α. λw:γ. c (f v) w) n

map : ∀α.∀β. (α → β)→[α]→[β]
= λα. λβ. mapW α β [β] ((:) β) ([] β)

The wrapper calls the worker directly with a list type and respective list constructors
as arguments. The worker is almost identical to Gill’s worker. Note that we insert the
abstraction from list type and its respective list constructors between the type abstractions
and the term abstractions. We cannot insert the new term abstractions in front of the original
type abstractions, because the list type [β], from which we abstract, contains a type variable
β which is bound in the type of the function. To insert the new abstractions before the
original term abstractions has several minor advantages. First, we thus do not require that all
term arguments are λ-abstracted at the top of the definition body, the definition may also use
partial application. Second, the wrapper can be inlined and β-reduced at all call sites, even
where it is only partially applied, because we can use partial application in the definition of
the wrapper.

To see the gained expressiveness consider the function unzip, which produces two lists.
The worker abstracts from both list types and their respective sets of list constructors.

unzipW : ∀α.∀β.∀γ1.∀γ2.(α→γ1→γ1)→γ1→(β→γ2→γ2)→γ2→[(α,β)]→(γ1,γ2)

= λα. λβ. λγ1. λγ2. λc1:α→γ1→γ1. λn1:γ1. λc2:β→γ2→γ2. λn2:γ2.
foldr (α,β) (γ1,γ2)

(λy:(α,β).λu:(γ1,γ2).case y of {(v,w)→ case u of {(vs,ws)→
(,) γ1 γ2 (c1 v vs) (c2 w ws) }})

((,) γ1 γ2 n1 n2)

unzip : ∀α.∀β.[(α,β)]→([α],[β])
= λα.λβ. unzipW α β [α] [β] ((:) α) ([] α) ((:) β) ([] β)

4.5 Deforestation (nearly) without Inlining

The new wrappers transfer the information needed for the list abstraction algorithm. Let
us reconsider the expression fst [τ1] [τ2] (unzip τ1 τ2 zs). After the wrapper unzip is
inlined

fst [τ1] [τ2] (unzipW τ1 τ2 [τ1] [τ2] ((:) τ1) ([] τ1) ((:) τ2) ([] τ2) zs)

all result list types and constructors are exposed and the type-inference based algorithm can
abstract them without any further inlining:

λγ.λc:τ1→γ→γ.λn:γ. fst γ [τ2] (unzipW τ1 τ2 γ [τ2] c n ((:) τ2) ([] τ2) zs)

So fusion with a consumer foldr τ1 τ3 e(:) e[] results in

(λγ.λc:τ1→γ→γ.λn:γ. fst γ [τ2] (unzipW τ1 τ2 γ [τ2] c n ((:) τ2) ([] τ2) zs)) τ3 e(:) e[]

4.6 More Wrappers

The list append function (++) is notorious for being difficult to fuse with. The expression
(++) τ xs ys does not produce the whole result list itself, because only xs is copied but not
ys. Therefore (++) cannot be defined in terms of build. Gill defines a further second-order
typed function augment to solve this problem. However, we can easily define a worker for (++)
by abstracting not just from the result list but simultaneously from the type of the second
argument:

appW : ∀α.∀γ.(α → γ → γ) → γ → [α] → γ → γ
= λα. λγ. λc:α → γ → γ. λn:γ. λxs:[α]. λys:γ.

foldr α γ c ys xs

(++) : ∀α.[α] → [α] → [α]
= λα. appW α [α] ((:) α) ([] α)

The type of appW implies, that we can only abstract from the result list constructors of an
application of (++), if we can abstract from the result list constructors of its second argument.
We believe that this will seldom restrict deforestation in practise. For example the definition

concat : ∀α.[[α]] → [α]
= λα. foldr [α] [α] ((++) α) ([] α)

can be split into worker and wrapper thanks to the wrapper appW:

concatW : ∀α.∀γ.(α → γ → γ) → γ → [[α]] → γ
= λα. λγ. λc:α → γ → γ. λn:γ. foldr [α] γ (appW α γ c n) n

concat : ∀α.[[α]] → [α]
= λα. concatW α [α] ((:) α) ([] α)

None of the previous function definitions was recursive. The recursion was hidden by
foldr. The recursively defined function tails returns the list of all final segments of xs,
longest first:

tails : ∀α.[α] → [[α]]
= λα. λxs:[α]. case xs of {

[] → (:) [α] ([] α) ([] [α])
y:ys → (:) [α] xs (tails α ys) }

A list can also be abstracted from this recursive definition:

tailsW : ∀α.∀γ.[α] → γ
= λα. λγ. λc:[α] → γ → γ. λn:γ. λxs:[α]. case xs of {

[] → c ([] α) n

y:ys → c xs (tailsW α γ c n ys) }

tails : ∀α.[α] → [[α]]
= λα. tailsW α [[α]] ((:) [α]) ([] [α])

Note that to abstract the list the recursive calls in the definition must be to the worker
itself. It is not possible to abstract the list first and to inline calls to the wrapper in the
definition body later.

4.7 Effects on Performance

As Gill already noticed for his worker/wrapper scheme, there is a substantial performance
difference between calling a function as originally defined (map τ ′ τ) and calling the worker
with list constructors as arguments (mapW τ ′ τ [τ] ((:) τ) ([] τ)). Constructing a list
with list constructors that are passed as arguments is more expensive than constructing the list
directly. After deforestation all calls of workers that were not needed still have list constructors
as arguments. So, as Gill suggested, we must have for each worker a version which is specialised
to the list constructors and replace the call of each unused worker by a call of its specialised
version. We could use the original, unsplit definition of the function, but by specialising the
worker we can profit from any optimisations, especially deforestation, which were performed
inside the definition of the worker. Note that we only derive one specialised definition for
every worker definition.

The worker/wrapper scheme increases code size through the introduction of wrappers and
specialised workers. However, this increase is clearly limited in contrast to the code increase
that is caused by our original list abstraction algorithm with inlining. An implementation
will show if the code size increase is acceptable. Note that the definition of workers which are
not needed for deforestation can be removed by standard dead code elimination after worker
specialisation has been performed.

5 The Worker/Wrapper Split Algorithm

For the worker/wrapper scheme each list-producing function definition has to be split into a
worker and a wrapper definition.

5.1 Derivation of Workers through Type Inference

A worker is easily derived from a non-recursive function definition by application of the list
abstraction algorithm. Consider the foldr definition of map. Only the preceding type ab-
stractions have to be removed to form the input for the list abstraction algorithm:

{foldr :∀α.∀β.(α→β→β)→β→[α]→β, (:) :∀α.α→[α]→[α], [] :∀α.[α]}
⊢ λf:α → β. foldr α [β] (λv:α.λw:[β].(:) β (f v) w) ([] β)

The algorithm returns:

λγ. λc:β → γ → γ. λn:γ. λf:α → β. foldr α γ (c (f v) w) n

So the result list can be abstracted. The readdition of the abstraction from α to obtain
the worker and the construction of the wrapper is straightforward. In the case that no list
can be abstracted, no worker/wrapper split takes place.

Because all list types in the the type of the processed function are replaced by type variables
— not only the list types in the result — also the worker of (++) is derived by this algorithm.
The derivation of the workers unzipW and concatW poses no problem either.

5.2 Derivation of Workers of Recursively Defined Functions

For recursive definitions we have to modify the list abstraction algorithm slightly. Consider
the definition of tails given in Section 4.6. The input typing for the type inference algorithm

must contain a type assignment for the recursive call(s). Because we remove the abstraction
from the type variable α, we have to replace tails α by a new identifier tails’. The type
environment assigns the same type to this identifier as is given for the whole definition body.
The latter corresponds to the processing of recursive lets in the Damas-Milner type inference
algorithm.

{tails’ : γ1 → γ2, n1 : γ3, n2 : γ4, c1 : γ5 → γ6 → γ6, c2 : γ7 → γ8 → γ8}
⊢ λxs:[α]. case xs of {

[] → c1 n1 n2

y:ys → c2 xs (tails’ ys) } : γ1 → γ2

Type inference yields:

{tails’ : [α] → γ, n1 : [α], n2 : γ, c1 : [α] → γ → γ, c2 : [α] → γ → γ}
⊢ λxs:[α]. case xs of {

[] → c1 n1 n2

y:ys → c2 xs (tails’ ys) } : [α] → γ

The remaining construction of the worker and wrapper is again straightforward.
For the worker/wrapper split of several mutually recursive definitions the type inference

algorithm processes all definitions together.

5.3 Traversal Order

The worker/wrapper split algorithm splits each let defined function individually. The example
of concat in Section 4.6 shows us, that the list could only be abstracted after the wrapper
of (++) had been inlined. Hence the split algorithm must traverse the program in top-down
order and inline wrappers in the remaining program directly after they were derived.

Additionally, definitions can be nested, that is, the right-hand-side of a let binding can
contain another let binding. Here the inner definition has to be split first. Its wrapper can
then be inlined in the body of the outer definition and thus enable the abstraction of more
lists from the outer definition.

6 Functions that Consume their own Result

There are list functions which consume their own result. The most simple example is the
definition of the function that reverses a list in quadratic time:

reverse : ∀α.[α] → [α]
= λα. λxs:[α]. case xs of {

[] → [] α
y:ys → (++) α (reverse α ys) ((:) α y ([] α)) }

This definition can be split into the following worker and wrapper:

reverseW : ∀α.∀γ.(α → γ → γ) → γ → [α] → γ
= λα. λγ. λc:α → γ → γ. λn:γ. λxs:[α]. case xs of {

[] → n

y:ys → appW α γ c n (reverseWα [α] ((:)α) ([]α) ys) (c y n) }

reverse : ∀α.[α] → [α]
= λα. reverseW α [α] ((:) α) ([] α)

In the definition of reverseW the worker appW can be inlined. Then short cut fusion yields:

reverseW : ∀α.∀γ.(α → γ → γ) → γ → [α] → γ
= λα. λγ. λc:α → γ → γ. λn:γ. λxs:[α]. case xs of {

[] → n

y:ys → reverseW α γ c (c y n) ys }

The deforested version performs list reversal in linear time. The worker argument for the
abstraction from the list constructor [] is used as an accumulator.

The list abstraction algorithm with inlining cannot achieve this transformation of the quad-
ratic version into the linear version. To abstract the intermediate list, that algorithm would
inline the definition of reverse. Then the intermediate list would be eliminated successfully,
but the inlined definition of reverse would contain a new starting point for deforestation
which would lead to new inlining of reverse . . . The quadratic version creates at run time an
intermediate list between each recursive call. To remove all these intermediate lists through a
finite amount of transformation the worker/wrapper scheme is required.

6.1 Worker Derivation with Polymorphic Recursion

Unfortunately, the worker reverseW cannot be derived by the algorithm described in Section 5.
Compare the recursive definition of reverseW with the recursive definition of tailsW. The
former is polymorphically recursive, that is, a recursive call uses type arguments different
from the abstracted type variables. Obviously, functions that consume their own result need
such polymorphically recursive workers.

Typability in the Damas-Milner type system with polymorphic recursion is semi-decidable,
that is, there are algorithms which do infer the most general type of an expression within
the Damas-Milner type system with polymorphic recursion if it is typable and may diverge
otherwise. Fortunately, the input of the worker/wrapper split algorithm is typable, we only
try to find a more general type than we have.

To derive a possibly polymorphically recursive worker definition, we build on Mycroft’s
extension of the Damas-Milner type inference algorithm [Myc84]. We start with the most
general worker type possible, which is obtained from the original type by replacing every list
type by a new type variable and abstracting from it and respective list constructors.

{reverseW :∀α.∀γ1.∀γ2.(α→γ1→γ1)→γ1→(α→γ2→γ2)→γ2→(γ1→γ2),
n1 : γ3, n2 : γ4, n3 : γ5, n4 : γ6, n5 : γ7,
c1 :α→γ8→γ8, c2 :α→γ9→γ9, c3 :α→γ10→γ10, c4 :α→γ11→γ11}
⊢ λxs:γ12. case xs of {

[] → n1

y:ys → appW α γ13 c1 n2 (reverseW α γ14 γ15 c2 n3 c3 n4 ys) (c4 y n5) }
: γ16

We perform type inference to obtain a first approximation of the type of the worker:

{reverseW :∀α.∀γ1.∀γ2.(α→γ1→γ1)→γ1→(α→γ2→γ2)→γ2→(γ1→γ2),
n1 : γ, n2 : γ, n3 : [α], n4 : [α], n5 : γ,
c1 :α→γ→γ, c2 :α→[α]→[α], c3 :α→[α]→[α], c4 :α→γ→γ}
⊢ λxs:[α]. case xs of {

[] → n1

y:ys → appW α γ c1 n2 (reverseW α [α] [α] c2 n3 c3 n4 ys) (c4 y n5) }
: [α] → γ

Subsequently we infer anew the type of the definiton body, this time under the assumption
that reverseW has the type ∀α.∀γ.(α→γ→γ)→ γ → [α]→ γ, the result of the first type
inference. This process iterates until the inferred type is stable, that is input and output type
are identical. For our example the second iteration already shows that the result of the first
iteration is correct. In general, worker derivation stops latest after n + 1 iterations, where n
is the number of list types in the type of the original function.

6.2 Further Workers with Polymorphic Recursion

Similar to the example reverse are definitions of functions which traverse a tree to collect
all node entries in a list. A straightforward quadratic time definition can be split into a
polymorphically recursive worker and a wrapper and then be deforested to obtain a linear
time definition which uses an accumulating argument.

A different, fascinating example is the definition of the function inits, which determines
the list of initial segments of a list with the shortest first.

inits: ∀α.[α] → [[α]]
= λα. λxs:[α].

case xs of {
[] → (:) [α] ([] α) ([] [α])
y:ys → (:) [α] ([] α) (map [α] [α] ((:) α y) (inits α ys)) }

It is split into the following polymorphically recursive worker and wrapper:

initsW: ∀α.∀γ1.∀γ2.(α → γ1 → γ1) → γ1 → (γ1 → γ2 → γ2) → γ2 → [α] → γ2

= λα. λγ1. λγ2. λc1:α → γ1 → γ1. λn1:γ1. λc2:γ1 → γ2 → γ2. λn2:γ2.λxs:[α].
case xs of {
[] → c2 n1 n2

y:ys → c2 n1 (mapW γ1 γ1 γ2 c2 n2 (c1 y)

(initsW α γ1 [γ1] c1 n1 ((:) γ1) ([] γ1) ys)) }

inits: ∀α.[α] → [[α]]
= λα. initsW α [α] [[α]] ((:) α) ([] α) ((:) [α]) ([] [α])

Note the abstraction from both (nested) result lists, which cannot be expressed with build.
Fusion can be performed in the definition body of initsW:

initsW: ∀α.∀γ1.∀γ2.(α → γ1 → γ1) → γ1 → (γ1 → γ2 → γ2) → γ2 → [α] → γ2

= λα. λγ1. λγ2. λc1:α → γ1 → γ1. λn1:γ1. λc2:γ1 → γ2 → γ2. λn2:γ2.λxs:[α].
case xs of {
[] → c2 n1 n2

y:ys → c2 n1 (initsW α γ1 γ2 (λv:γ1. λw:γ2. c2 (c1 y v) w) n2 ys)}

The n-queens function as defined in [Gil96], Section 5.1, is another example in the same
spirit.

6.3 Inaccessible Recursive Arguments

Unfortunately, a function may consume its own result but not be defined recursively. For
example, the function reverse should actually be defined in terms of foldr, to enable short
cut deforestation with reverse as consumer.

reverse: ∀α.[α] → [α]
= λα. foldr α [α] (λy:α.λr:[α].(++) α r ((:) α y ([]α))) ([] α)

Here type inference with polymorphic recursion cannot help. To enable list abstraction we
rewrite the definition as follows:

reverse: ∀α.[α] → [α]
= λα. foldr α [α]

(λy:α.λr:(α→[α]→[α])→[α]→[α].
(++) α (r ((:)α) ([]α)) ((:)α y ([]α)))

(λc:α → [α] → [α].λn:[α]. n)
((:) α)
([] α)

It is, however, unclear when and how such a lifting of the result type of a function that
encapsulates recursion can be done in general.

6.4 Deforestation Changes Complexity

Deforestation of the definition of reverse changes its complexity from quadratic to linear time.
In case of the definition of inits, the change of complexity is more subtle. Both the original
definition and the deforested definition take quadratic time to produce their complete result.
However, to produce only the outer list of the result, with computation of the list elements
still suspended, the original definition still takes quadratic time whereas the deforested version
only needs linear time.

A polymorphically recursive worker will nearly always enable deforestation which changes
the asymptotic time complexity of a function definition. This power is, however, a double-
edged sword. A small syntactic change of a program (cf. previous subsection) may cause
deforestation to be no longer applicable, and thus change the asymptotic complexity of the
program. It can hence be argued that such far-reaching modifications should be left to the
programmer.

7 Summary and Future Work

In this paper we presented an expressive worker/wrapper scheme to perform short cut de-
forestation (nearly) without inlining. An algorithm which is based on our type abstraction
algorithm [Chi99] splits all definitions of list-producing functions of a program into workers
and wrappers. The wrappers are small enough to be inlined unconditionally everywhere, also
across module boundaries. They transfer the information needed for type abstraction in the
split algorithm and the actual deforestation algorithm.

The actual deforestation algorithm itself searches for occurrences of foldr, abstracts the
result list from the producer and then directly applies the short cut fusion rule. Further
optimisations may be obtained by a subsequent standard inlining pass.

The deforestation algorithm is separate from the worker/wrapper split algorithm. The
algorithms may be integrated, but we intend to perform deforestation after worker/wrapper
splitting. Because deforestation and other optimisations may lead to new deforestation op-
portunities, it is useful to repeat deforestation several times.

Finally, we studied functions which consume their own result. Their definitions can auto-
matically be deforested if the split algorithm is extended on the basis of Mycroft’s extension of
Damas-Milner type inference to polymorphic recursion. Nonetheless they still raise interesting
questions.

A Worker/Wrapper Scheme for Consumers We focused on how to derive a producer
for short cut deforestation without requiring large-scale inlining. Dually the consumer must be
a foldr and hence sufficient inlining must be performed in the consumer to expose the foldr.
If the arguments of the foldr are large expressions, the standard inliner will refuse to inline
the foldr expression. So it seems reasonable to also split consumers into foldr wrappers and
separate workers for the arguments of foldr. This transformation, however, does not require
any (possibly type-based) analysis but can be performed directly on the syntactic structure.

Other Data Types The wrapper/worker scheme and the type-inference based derivation
of workers is not specific to lists but can be used for arbitrary algebraic data types. In
fact, a single worker can abstract from the data constructors of several different data types
simultaneously and type inference can derive all abstractions simultaneously as well. For
fusion we additionally need a catamorphism, that is a foldr, for the intermediate data type.
This catamorphism could be provided by the user through a compiler directive or be inferred
automatically by other algorithms.

Integration with Type Inference Algorithm The worker/wrapper split algorithm is not
as efficient as it could be. The list abstraction algorithm traverses a whole definition body
once. Even if we ignore polymorphic recursion, if n let bindings are nested, then the body of
the inner definition is traversed n times.

However, as stated in Section 2, the list abstraction algorithm uses a modified version
of the Damas-Milner type inference algorithm. The abstraction from type variables that
replace list types corresponds to the generalisation step of the Damas-Milner algorithm. The
list abstraction algorithm just additionally abstracts from term variables that replace list
constructors and inserts both type and term abstractions into the program. The Damas-
Milner algorithm recursively traverses a program only once. So we plan to integrate explicit
type and term abstraction at let bindings into this type inference algorithm to obtain a single
pass split algorithm. To deal with polymorphic recursion as well, the type inference algorithm
of Emms and Leiß, which integrates semiunification into the Damas-Milner algorithm, may
provide a good basis [EL99].

Implementation We have a working prototype of the list abstraction algorithm with inlin-
ing. On this basis we are implementing a simple worker/wrapper split algorithm. The final
goal is an implementation in the Glasgow Haskell compiler to apply type-inference based short
cut deforestation to real-world programs.

Acknowledgements

I thank Simon Peyton Jones for several comments that inspired this paper. Especially, he
drew my attention to producers that consume their own result.

References

[Chi99] Olaf Chitil. Type inference builds a short cut to deforestation. In ICFP’99, Inter-

national Conference on Functional Programming. ACM Press, 1999.

[DM82] L. Damas and R. Milner. Principal type-schemes for functional programs. In Con-

ference Record of the Ninth Annual ACM Symposium on Principles of Programming

Languages, pages 207–212. ACM Press, January 1982.

[EL99] Martin Emms and Hans Leiß. Extending the type checker of Standard ML by poly-
morphic recursion. Theoretical Computer Science, 212(1–2):157–181, February 1999.

[GHC] The Glasgow Haskell compiler. Availabel from http://research.microsoft.com/

users/t-simonm/ghc/.

[Gil96] Andrew Gill. Cheap Deforestation for Non-strict Functional Languages. PhD thesis,
Glasgow University, 1996.

[GLP93] Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A Short Cut to De-
forestation. In FPCA’93, Conference on Functional Programming Languages and

Computer Architecture, pages 223–232. ACM Press, 1993.

[Hug89] J. Hughes. Why Functional Programming Matters. Computer Journal, 32(2):98–107,
1989.

[LY98] Oukseh Lee and Kangkeun Yi. Proofs about a folklore let-polymorphic type inference
algorithm. ACM Transactions on Programming Languages and Systems, 20(4):707–
723, July 1998.

[Myc84] A. Mycroft. Polymorphic type schemes and recursive definitions. In M. Paul and
B. Robinet, editors, Proceedings of the International Symposium on Programming,
LNCS 167, pages 217–228, Toulouse, France, April 1984. Springer.

[PH+99] Simon L. Peyton Jones, John Hughes, et al. Haskell 98: A non-strict, purely func-
tional language. http://www.haskell.org, February 1999.

[PM99] Simon L. Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell compiler
inliner. Submitted to IDL’99, July 1999.

