248 research outputs found

    Expanded Interactome of the Intrinsically Disordered Protein Dss1

    Get PDF
    Summary: Dss1 (also known as Sem1) is a conserved, intrinsically disordered protein with a remarkably broad functional diversity. It is a proteasome subunit but also associates with the BRCA2, RPA, Csn12-Thp1, and TREX-2 complexes. Accordingly, Dss1 functions in protein degradation, DNA repair, transcription, and mRNA export. Here in Schizosaccharomyces pombe, we expand its interactome further to include eIF3, the COP9 signalosome, and the mitotic septins. Within its intrinsically disordered ensemble, Dss1 forms a transiently populated C-terminal helix that dynamically interacts with and shields a central binding region. The helix interfered with the interaction to ATP-citrate lyase but was required for septin binding, and in strains lacking Dss1, ATP-citrate lyase solubility was reduced and septin rings were more persistent. Thus, even weak, transient interactions within Dss1 may dynamically rewire its interactome. : Schenstrøm et al. demonstrate that the disordered protein Dss1 forms a transient intramolecular interaction between the C-terminal helical region and a central hydrophobic region. Proteomics reveal several Dss1-binding proteins, including all PCI-domain protein complexes. The dynamic fold-back structure regulates Dss1 interactions with the mitotic septins and ATP-citrate lyase. Keywords: intrinsically disordered proteins, protein degradation, proteasome, PCI domai

    The human Na<sup>+</sup>/H<sup>+</sup> exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2

    No full text
    Background Extracellular signal-regulated kinase 2 (ERK2) is an S/T kinase with more than 200 known substrates, and with critical roles in regulation of cell growth and differentiation and currently no membrane proteins have been linked to ERK2 scaffolding. Methods and results Here, we identify the human Na+/H+ exchanger 1 (hNHE1) as a membrane scaffold protein for ERK2 and show direct hNHE1-ERK1/2 interaction in cellular contexts. Using nuclear magnetic resonance (NMR) spectroscopy and immunofluorescence analysis we demonstrate that ERK2 scaffolding by hNHE1 occurs by one of three D-domains and by two non-canonical F-sites located in the disordered intracellular tail of hNHE1, mutation of which reduced cellular hNHE1-ERK1/2 co-localization, as well as reduced cellular ERK1/2 activation. Time-resolved NMR spectroscopy revealed that ERK2 phosphorylated the disordered tail of hNHE1 at six sites in vitro, in a distinct temporal order, with the phosphorylation rates at the individual sites being modulated by the docking sites in a distant dependent manner. Conclusions This work characterizes a new type of scaffolding complex, which we term a “shuffle complex”, between the disordered hNHE1-tail and ERK2, and provides a molecular mechanism for the important ERK2 scaffolding function of the membrane protein hNHE1, which regulates the phosphorylation of both hNHE1 and ERK2

    Extreme disorder in an ultrahigh-affinity protein complex

    Full text link
    Molecular communication in biology is mediated by protein interactions. According to the current paradigm, the specificity and affinity required for these interactions are encoded in the precise complementarity of binding interfaces. Even proteins that are disordered under physiological conditions or that contain large unstructured regions commonly interact with well-structured binding sites on other biomolecules. Here we demonstrate the existence of an unexpected interaction mechanism: the two intrinsically disordered human proteins histone H1 and its nuclear chaperone prothymosin-α associate in a complex with picomolar affinity, but fully retain their structural disorder, long-range flexibility and highly dynamic character. On the basis of closely integrated experiments and molecular simulations, we show that the interaction can be explained by the large opposite net charge of the two proteins, without requiring defined binding sites or interactions between specific individual residues. Proteome-wide sequence analysis suggests that this interaction mechanism may be abundant in eukaryotes

    La réfraction des rayons X aux grands angles de diffraction

    No full text
    Influence de la variation de longueur d'onde d'un faisceau de rayons X pénétrant dans un cristal sur la valeur de l'angle de Bragg. Pour les grands angles de diffraction, cette correction de longueur d'onde est du même ordre de grandeur que celle due à la réfraction pour les petits angles de diffraction.Hendus H. La réfraction des rayons X aux grands angles de diffraction. In: Bulletin de la Société française de Minéralogie et de Cristallographie, volume 73, 4-6, 1950. pp. 187-192

    Structual Dynamics and Function of the Na<sup>+</sup>/H<sup>+</sup> Exchanger 1

    No full text

    Die Struktur des explosiblen Antimons und des glasigen Selens

    No full text
    • …
    corecore