2,607 research outputs found

    Modelling ripples in Orion with coupled dust dynamics and radiative transfer

    Get PDF
    In light of the recent detection of direct evidence for the formation of Kelvin-Helmholtz instabilities in the Orion nebula, we expand upon previous modelling efforts by numerically simulating the shear-flow driven gas and dust dynamics in locations where the HII_{II} region and the molecular cloud interact. We aim to directly confront the simulation results with the infrared observations. Methods: To numerically model the onset and full nonlinear development of the Kelvin-Helmholtz instability we take the setup proposed to interpret the observations, and adjust it to a full 3D hydrodynamical simulation that includes the dynamics of gas as well as dust. A dust grain distribution with sizes between 5-250 nm is used, exploiting the gas+dust module of the MPI-AMRVAC code, in which the dust species are represented by several pressureless dust fluids. The evolution of the model is followed well into the nonlinear phase. The output of these simulations is then used as input for the SKIRT dust radiative transfer code to obtain infrared images at several stages of the evolution, which can be compared to the observations. Results: We confirm that a 3D Kelvin-Helmholtz instability is able to develop in the proposed setup, and that the formation of the instability is not inhibited by the addition of dust. Kelvin-Helmholtz billows form at the end of the linear phase, and synthetic observations of the billows show striking similarities to the infrared observations. It is pointed out that the high density dust regions preferentially collect on the flanks of the billows. To get agreement with the observed Kelvin-Helmholtz ripples, the assumed geometry between the background radiation, the billows and the observer is seen to be of critical importance.Comment: 8 pages, 10 figure

    Continuous Decision Support

    Get PDF
    Organizations are often faced with portfolio construction efforts that require them to select one or more alternatives, subject to resource constraints, with the aim of achieving the maximum value possible. This is a well-defined problem with a number of analytically defensible approaches, provided the entire set of alternatives is known when the decision event takes place. Less well treated in the literature is how to approach this problem when the entire set of alternatives is unknown, as when the alternatives arrive over time. This change in the availability of data shifts the problem from one of identifying an optimal subset to one in which a series of smaller decisions are undertaken regarding the acceptability of each alternative as it presents itself. This work expands upon a methodology known as the Triage Method. The original Triage Method provided a screening tool that could be applied to alternatives as they presented themselves to determine if they should be accepted for further study, rejected out of hand, or held pending until later date. This decision was made strictly upon the value of the alternative and with no consideration of its cost. Two extensions to the Triage Method are offered which provide a capability to consider cost and other resource requirements of the alternatives, thus allowing a move from simply screening to portfolio selection. Guidelines are presented as to when each of these extensions is best employed, a characterization of the performance tradeoff between these and more traditional methodologies is developed, and insight and techniques for setting the value of parameters required by the extensions are provided

    Directional solidification of flake and nodular cast iron during KC-135 low-g maneuvers

    Get PDF
    Alloys solidified in a low-gravity environment can, due to the elimination of sedimentation and convection, form unique and often desirable microstructures. One method of studying the effects of low-gravity (low-g) on alloy solidification was the use of the NASA KC-135 aircraft flying repetitive low-g maneuvers. Each maneuver gives from 20 to 30 seconds of low-g which is between about 0.1 and 0.001 gravity. A directional solidification furnace was used to study the behavior of off eutectic composition case irons in a low-g environment. The solidification interface of hypereutectic flake and spheroidal graphite case irons was slowly advanced through a rod sample, 5 mm in diameter. Controlled solidification was continued through a number of aircraft parabolas. The known solidification rate of the sample was then correlated with accelerometer data to determine the gravity level during solidification for any location of the sample. The thermal gradient and solidification rate were controlled independently. Samples run on the KC-135 aircraft exhibited bands of coarser graphite or of larger nodules usually corresponding to the regions solidified under low-g. Samples containing high phosphorous (used in order to determine the eutectic cell) exhibited larger eutectic cells in the low-g zone, followed by a band of coarser graphite

    Preliminary science report on the directional solidification of hypereutectic cast iron during KC-135 low-G maneuvers

    Get PDF
    An ADSS-P directional solidification furnace was reconfigured for operation on the KC-135 low-g aircraft. The system offers many advantages over quench ingot methods for study of the effects of sedimentation and convection on alloy formation. The directional sodification furnace system was first flown during the September 1982 series of flights. The microstructure of the hypereutectic cast iron sample solidified on one of these flights suggests a low-g effect on graphite morphology. Further experiments are needed to ascertain that this effect is due to low-gravity and to deduce which of the possible mechanisms is responsible for it

    Educational games - are they worth the effort? A literature survey of the effectiveness of serious games

    Get PDF

    Energy spectrum of turbulent fluctuations in boundary driven reduced magnetohydrodynamics

    Full text link
    The nonlinear dynamics of a bundle of magnetic flux ropes driven by stationary fluid motions at their endpoints is studied, by performing numerical simulations of the magnetohydrodynamic (MHD) equations. The development of MHD turbulence is shown, where the system reaches a state that is characterized by the ratio between the Alfven time (the time for incompressible MHD waves to travel along the field lines) and the convective time scale of the driving motions. This ratio of time scales determines the energy spectra and the relaxation toward different regimes ranging from weak to strong turbulence. A connection is made with phenomenological theories for the energy spectra in MHD turbulence.Comment: Published in Physics of Plasma

    Learning is not decline: The mental lexicon as a window into cognition across the lifespan

    Get PDF
    As otherwise healthy adults age, their performance on cognitive tests tends to decline. This change is traditionally taken as evidence that cognitive processing is subject to significant declines in healthy aging. We examine this claim, showing current theories over-estimate the evidence in support of it, and demonstrating that when properly evaluated, the empirical record often indicates that the opposite is true. To explain the disparity between the evidence and current theories, we show how the models of learning assumed in aging research are incapable of capturing even the most basic of empirical facts of “associative” learning, and lend themselves to spurious discoveries of “cognitive decline.” Once a more accurate model of learning is introduced, we demonstrate that far from declining, the accuracy of older adults lexical processing appears to improve continuously across the lifespan. We further identify other measures on which performance does not decline with age, and show how these different patterns of performance fit within an overall framework of learning. Finally, we consider the implications of our demonstrations of continuous and consistent learning performance throughout adulthood for our understanding of the changes in underlying brain morphology that occur during the course of cognitive development across the lifespan

    Magnetospheric considerations for solar system ice state

    Get PDF
    The current lattice configuration of the water ice on the surfaces of the inner satellites of Jupiter and Saturn is likely shaped by many factors. But laboratory experiments have found that energetic proton irradiation can cause a transition in the structure of pure water ice from crystalline to amorphous. It is not known to what extent this process is competitive with other processes in solar system contexts. For example, surface regions that are rich in water ice may be too warm for this effect to be important, even if the energetic proton bombardment rate is very high. In this paper, we make predictions, based on particle flux levels and other considerations, about where in the magnetospheres of Jupiter and Saturn the ∼MeV proton irradiation mechanism should be most relevant. Our results support the conclusions of Hansen and McCord (2004), who related relative level of radiation on the three outer Galilean satellites to the amorphous ice content within the top 1 mm of surface. We argue here that if magnetospheric effects are considered more carefully, the correlation is even more compelling. Crystalline ice is by far the dominant ice state detected on the inner Saturnian satellites and, as we show here, the flux of bombarding energetic protons onto these bodies is much smaller than at the inner Jovian satellites. Therefore, the ice on the Saturnian satellites also corroborates the correlation
    corecore