15 research outputs found

    The role of dog population management in rabies elimination a review of current approaches and future opportunities 

    Get PDF
    Free-roaming dogs and rabies transmission are integrally linked across many low-income countries, and large unmanaged dog populations can be daunting to rabies control program planners. Dog population management (DPM) is a multifaceted concept that aims to improve the health and well-being of free-roaming dogs, reduce problems they may cause, and may also aim to reduce dog population size. In theory, DPM can facilitate more effective rabies control. Community engagement focused on promoting responsible dog ownership and better veterinary care could improve the health of individual animals and dog vaccination coverage, thus reducing rabies transmission. Humane DPM tools, such as sterilization, could theoretically reduce dog population turnover and size, allowing rabies vaccination coverage to be maintained more easily. However, it is important to understand local dog populations and community attitudes toward them in order to determine whether and how DPM might contribute to rabies control and which DPM tools would be most successful. In practice, there is very limited evidence of DPM tools achieving reductions in the size or turnover of dog populations in canine rabies-endemic areas. Different DPM tools are frequently used together and combined with rabies vaccinations, but full impact assessments of DPM programs are not usually available, and therefore, evaluation of tools is difficult. Surgical sterilization is the most frequently documented tool and has successfully reduced dog population size and turnover in a few low-income settings. However, DPM programs are mostly conducted in urban settings and are usually not government funded, raising concerns about their applicability in rural settings and sustainability over time. Technical demands, costs, and the time necessary to achieve population-level impacts are major barriers. Given their potential value, we urgently need more evidence of the effectiveness of DPM tools in the context of canine rabies control. Cheaper, less labor-intensive tools for dog sterilization will be extremely valuable in realizing the potential benefits of reduced population turnover and size. No one DPM tool will fit all situations, but if DPM objectives are achieved dog populations may be stabilized or even reduced, facilitating higher dog vaccination coverages that will benefit rabies elimination efforts.LT and DB were supported by UBS Optimus Foundation through a grant to the Global Alliance for Rabies Control.https://www.frontiersin.org/journals/veterinary-science#am2018Microbiology and Plant Patholog

    A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is strongly associated with the human leukocyte antigen (HLA)- DRB1 locus that possesses the shared susceptibility epitope (SE) and the citrullination of self-antigens. We show how citrullinated aggrecan and vimentin epitopes bind to HLADRB1* 04:01/04. Citrulline was accommodated within the electropositive P4 pocket of HLA-DRB1*04:01/04, whereas the electronegative P4 pocket of the RA-resistant HLADRB1* 04:02 allomorph interacted with arginine or citrulline-containing epitopes. Peptide elution studies revealed P4 arginine-containing peptides from HLA-DRB1*04:02, but not from HLA-DRB1*04:01/04. Citrullination altered protease susceptibility of vimentin, thereby generating self-epitopes that are presented to T cells in HLA-DRB1*04:01+ individuals. Using HLA-II tetramers, we observed citrullinated vimentin- and aggrecan-specific CD4+ T cells in the peripheral blood of HLA-DRB1*04:01+ RA-affected and healthy individuals. In RA patients, autoreactive T cell numbers correlated with disease activity and were deficient in regulatory T cells relative to healthy individuals. These findings reshape our understanding of the association between citrullination, the HLA-DRB1 locus, and T cell autoreactivity in RA

    A Role for TLR4 in Clostridium difficile Infection and the Recognition of Surface Layer Proteins

    Get PDF
    Clostridium difficile is the etiological agent of antibiotic-associated diarrhoea (AAD) and pseudomembranous colitis in humans. The role of the surface layer proteins (SLPs) in this disease has not yet been fully explored. The aim of this study was to investigate a role for SLPs in the recognition of C. difficile and the subsequent activation of the immune system. Bone marrow derived dendritic cells (DCs) exposed to SLPs were assessed for production of inflammatory cytokines, expression of cell surface markers and their ability to generate T helper (Th) cell responses. DCs isolated from C3H/HeN and C3H/HeJ mice were used in order to examine whether SLPs are recognised by TLR4. The role of TLR4 in infection was examined in TLR4-deficient mice. SLPs induced maturation of DCs characterised by production of IL-12, TNFα and IL-10 and expression of MHC class II, CD40, CD80 and CD86. Furthermore, SLP-activated DCs generated Th cells producing IFNγ and IL-17. SLPs were unable to activate DCs isolated from TLR4-mutant C3H/HeJ mice and failed to induce a subsequent Th cell response. TLR4−/− and Myd88−/−, but not TRIF−/− mice were more susceptible than wild-type mice to C. difficile infection. Furthermore, SLPs activated NFκB, but not IRF3, downstream of TLR4. Our results indicate that SLPs isolated from C. difficile can activate innate and adaptive immunity and that these effects are mediated by TLR4, with TLR4 having a functional role in experimental C. difficile infection. This suggests an important role for SLPs in the recognition of C. difficile by the immune system

    Economic and feasibility comparison of the dRIT and DFA for decentralized rabies diagnosis in resource-limited settings : the use of Nigerian dog meat markets as a case study

    No full text
    BACKGROUND : Rabies lyssavirus (RABV) is the aetiologic agent of rabies, a disease that is severely underreported in Nigeria as well as elsewhere in Africa and Asia. Despite the role that rabies diagnosis plays towards elucidating the true burden of the disease, Nigeria–a country of 180 million inhabitants–has a limited number of diagnostic facilities. In this study, we sought to investigate two of the World Organization for Animal Health (OIE)-recommended diagnostic assays for rabies–viz; the direct fluorescent antibody test (DFA) and the direct rapid immunohistochemical test (dRIT) in terms of their relative suitability in resource-limited settings. Our primary considerations were (1) the financial feasibility for implementation and (2) the diagnostic efficacy. As a case study, we used suspect rabies samples from dog meat markets in Nigeria. METHODS/PRINCIPAL FINDINGS : By developing a simple simulation framework, we suggested that the assay with the lowest cost to implement and routinely use was the dRIT assay. The costs associated with the dRIT were lower in all simulated scenarios, irrespective of the number of samples tested per year. In addition to the cost analysis, the diagnostic efficacies of the two assays were evaluated. To do this, a cohort of DFA-positive and -negative samples collected from dog meat markets in Nigeria were initially diagnosed using the DFA in Nigeria and subsequently sent to South Africa for diagnostic confirmation. In South Africa, all the specimens were re-tested with the DFA, the dRIT and a quantitative real-time polymerase chain reaction (qRT-PCR). In our investigation, discrepancies were observed between the three diagnostic assays; with the incongruent results being resolved by means of confirmatory testing using the heminested reverse transcription polymerase reaction and sequencing to confirm that they were not contamination. CONCLUSIONS/SIGNIFICANCE : The data obtained from this study suggested that the dRIT was not only an effective diagnostic assay that could be used to routinely diagnose rabies, but that the assay was also the most cost-effective option among all of the OIE recommended methods. In addition, the results of our investigation confirmed that some of the dogs slaughtered in dog markets were rabies-positive and that the markets posed a potential public health threat. Lastly, our data showed that the DFA, although regarded as the gold standard test for rabies, has some limitations—particularly at low antigen levels. Based on the results reported here and the current challenges faced in Nigeria, we believe that the dRIT assay would be the most suitable laboratory test for decentralized or confirmatory rabies diagnosis in Nigeria, given its relative speed, accuracy, cost and ease of use.S1 File. Estimating the potential cost of implementing rabies diagnostic assays in developing countries.S2 File. Neuronal tissue sample cohort from Nigeria depicting the estimated viral RNA copy numbers as determined using a quantitative real-time polymerase chain reaction assay.The Tertiary Educational Trust Fund (TETFund) of the Nigerian government through University of Nigeria Bench Space Intervention, the ARC-OVI National Assets, the TETFund and ARC-OVI fund.https://journals.plos.org/plosntdsam2021BiochemistryGeneticsMicrobiology and Plant PathologyVeterinary Tropical Disease

    Dexamethasone and monophosphoryl lipid a induce a distinctive profile on monocyte-derived dendritic cells through transcriptional modulation of genes associated with essential processes of the immune response

    No full text
    There is growing interest in the use of tolerogenic dendritic cells (tolDCs) as a potential target for immunotherapy. However, the molecular bases that drive the differentiation of monocyte-derived DCs (moDCs) toward a tolerogenic state are still poorly understood. Here, we studied the transcriptional profile of moDCs from healthy subjects, modulated with dexamethasone (Dex) and activated with monophosphoryl lipid A (MPLA), referred to as Dex-modulated and MPLA-activated DCs (DM-DCs), as an approach to identify molecular regulators and pathways associated with the induction of tolerogenic properties in tolDCs. We found that DM-DCs exhibit a distinctive transcriptional profile compared to untreated (DCs) and MPLA-matured DCs. Differentially expressed genes downregulated by DM included MMP12, CD1c, IL-1B, and FCER1A involved in DC maturation/inflammation and genes upregulated by DM included JAG1, MERTK, IL-10, and IDO1 involved in tolerance. Genes related to chemotactic responses, cell-to-cell signaling and interaction, fatty acid oxidation, metal homeostasis, and free radical scavenging were strongly enriched, predicting the activation of alternative metabolic processes than those driven by counterpart DCs. Furthermore, we identified a set of genes that were regulated exclusively by the combined action of Dex and MPLA, which are mainly involved in the control of zinc homeostasis and reactive oxygen species production. These data further support the important role of metabolic processes on the control of the DC-driven regulatory immune response. Thus, Dex and MPLA treatments modify gene expression in moDCs by inducing a particular transcriptional profile characterized by the activation of tolerance-associated genes and suppression of the expression of inflammatory genes, conferring the potential to exert regulatory functions and immune response modulation

    A plasma creatinine- and urea-based equation to estimate glomerular filtration rate in rats

    No full text
    Monitoring renal function is a vital part of kidney research involving rats. The laborious measurement of glomerular filtration rate (GFR) with administration of exogenous filtration markers does not easily allow serial measurements. Using an in-house database of inulin clearances, we developed and validated a plasma creatinine- and plasma urea-based equation to estimate GFR in a large cohort of male rats [development cohort n = 325, R2 = 0.816, percentage of predictions that fell within 30% of the true value (P30) = 76%] that had high accuracy in the validation cohort (n = 116 rats, R2 = 0.935, P30 = 79%). The equation was less accurate in rats with nonsteady-state creatinine, in which the equation should therefore not be used. In conclusion, applying this equation facilitates easy and repeatable estimates of GFR in rats. NEW & NOTEWORTHY This is the first equation, that we know of, which estimates glomerular filtration rate in rats based on a single measurement of body weight, plasma creatinine, and plasma urea

    Dexamethasone and Monophosphoryl Lipid A Induce a Distinctive Profile on Monocyte-Derived Dendritic Cells through Transcriptional Modulation of Genes Associated With Essential Processes of the Immune Response

    No full text
    There is growing interest in the use of tolerogenic dendritic cells (tolDCs) as a potential target for immunotherapy. However, the molecular bases that drive the differentiation of monocyte-derived DCs (moDCs) toward a tolerogenic state are still poorly understood. Here, we studied the transcriptional profile of moDCs from healthy subjects, modulated with dexamethasone (Dex) and activated with monophosphoryl lipid A (MPLA), referred to as Dex-modulated and MPLA-activated DCs (DM-DCs), as an approach to identify molecular regulators and pathways associated with the induction of tolerogenic properties in tolDCs. We found that DM-DCs exhibit a distinctive transcriptional profile compared to untreated (DCs) and MPLA-matured DCs. Differentially expressed genes downregulated by DM included MMP12, CD1c, IL-1B, and FCER1A involved in DC maturation/inflammation and genes upregulated by DM included JAG1, MERTK, IL-10, and IDO1 involved in tolerance. Genes related to chemotactic responses, cell-to-cell signaling and interaction, fatty acid oxidation, metal homeostasis, and free radical scavenging were strongly enriched, predicting the activation of alternative metabolic processes than those driven by counterpart DCs. Furthermore, we identified a set of genes that were regulated exclusively by the combined action of Dex and MPLA, which are mainly involved in the control of zinc homeostasis and reactive oxygen species production. These data further support the important role of metabolic processes on the control of the DC-driven regulatory immune response. Thus, Dex and MPLA treatments modify gene expression in moDCs by inducing a particular transcriptional profile characterized by the activation of tolerance-associated genes and suppression of the expression of inflammatory genes, conferring the potential to exert regulatory functions and immune response modulation

    Treatment with dexamethasone and monophosphoryl lipid A removes disease-associated transcriptional signatures in monocyte-derived dendritic cells from rheumatoid arthritis patients and confers tolerogenic features

    No full text
    Tolerogenic dendritic cells (TolDCs) are promising tools for therapy of autoimmune diseases such as rheumatoid arthritis (RA). Here we characterise monocyte-derived TolDCs from RA patients modulated with dexamethasone and activated with monophosphoryl lipid A (MPLA), referred to as MPLA-tDCs, in terms of gene expression, phenotype, cytokine profile, migratory properties and T cell-stimulatory capacity, in order to explore their suitability for cellular therapy. MPLA-tDCs derived from RA patients displayed an anti-inflammatory profile with reduced expression of costimulatory molecules and high IL-10/IL-12 ratio, but were capable of migrating towards the lymphoid chemokines CXCL12 and CCL19. These MPLA-tDCs induced hyporesponsiveness of autologous CD4+ T cells specific for synovial antigens in vitro. Global transcriptome analysis confirmed a unique transcriptional profile of MPLA-tDCs and revealed that RA-associated genes, which were upregulated in untreated DCs from RA patients, returned to expression levels of healthy donor-derived DCs after treatment with dexamethasone and MPLA. Thus, monocyte-derived DCs from RA patients have the capacity to develop tolerogenic features at transcriptional as well as at translational level, when modulated with dexamethasone and MPLA, overcoming disease-related effects. Furthermore, the ability of MPLA-tDCs to impair T cell responses to synovial antigens validates their potential as cellular treatment for RA
    corecore