1,259 research outputs found
MAX-consensus in open multi-agent systems with gossip interactions
We study the problem of distributed maximum computation in an open
multi-agent system, where agents can leave and arrive during the execution of
the algorithm. The main challenge comes from the possibility that the agent
holding the largest value leaves the system, which changes the value to be
computed. The algorithms must as a result be endowed with mechanisms allowing
to forget outdated information. The focus is on systems in which interactions
are pairwise gossips between randomly selected agents. We consider situations
where leaving agents can send a last message, and situations where they cannot.
For both cases, we provide algorithms able to eventually compute the maximum of
the values held by agents.Comment: To appear in the proceedings of the 56th IEEE Conference on Decision
and Control (CDC 17). 8 pages, 3 figure
Out-of-plane coupling structures for optical printed circuit boards
We present an integrated total internal reflection mirror and pluggable coupler that can be used for out-of-plane coupling in an optical PCB. The coupling efficiency of both mirror configurations is measured and compared
Embedded 45° micro-mirror for out-of-plane coupling in optical PCBs
We present an embedded 45° micro-mirror that can be used to couple light out-of-plane of the optical layer. The discrete
micro-mirror is inserted in a micro-cavity into the optical layer. Loss measurements at receiver side show a mirror loss as low as
0.35dB
Towards Low Cost Coupling Structures for Short-Distance Optical Interconnections
The performance of short distance optical interconnections in general relies
very strongly on coupling structures, since they will determine the overall
efficiency of the system to a large extent. Different configurations can be
considered and a variety of manufacturing technologies can be used. We present
two different discrete and two different integrated coupling components which
can be used to deflect the light beam over 90 degrees and can play a crucial
role when integrating optical interconnections in printed circuit boards. The
fabrication process of the different coupling structures is discussed and
experimental results are shown. The main characteristics of the coupling
structures are given. The main advantages and disadvantages of the different
components are discussed
Impact of g-factors and valleys on spin qubits in a silicon double quantum dot
We define single electron spin qubits in a silicon MOS double quantum dot
system. By mapping the qubit resonance frequency as a function of gate-induced
electric field, the spectrum reveals an anticrossing that is consistent with an
inter-valley spin-orbit coupling. We fit the data from which we extract an
inter-valley coupling strength of 43 MHz. In addition, we observe a narrow
resonance near the primary qubit resonance when we operate the device in the
(1,1) charge configuration. The experimental data is consistent with a
simulation involving two weakly exchanged-coupled spins with a g-factor
difference of 1 MHz, of the same order as the Rabi frequency. We conclude that
the narrow resonance is the result of driven transitions between the T- and T+
triplet states, using an ESR signal of frequency located halfway between the
resonance frequencies of the two individual spins. The findings presented here
offer an alternative method of implementing two-qubit gates, of relevance to
the operation of larger scale spin qubit systems
Local Leaders in Random Networks
We consider local leaders in random uncorrelated networks, i.e. nodes whose
degree is higher or equal than the degree of all of their neighbors. An
analytical expression is found for the probability of a node of degree to
be a local leader. This quantity is shown to exhibit a transition from a
situation where high degree nodes are local leaders to a situation where they
are not when the tail of the degree distribution behaves like the power-law
with . Theoretical results are verified by
computer simulations and the importance of finite-size effects is discussed.Comment: 4 pages, 2 figure
Opto-PCB: Three demonstrators for optical interconnections
We report on a research project targeting optical waveguide integrated PCBs conducted within the European FP6
Network of Excellence on Micro-Optics NEMO. For three identified feature requests we have built three specific demonstrators
respectively addressing the integration of active components, the fabrication of peripheral fibre ribbons and the integration of
multiple layers of waveguides on the board
- …